Plastics Industry News
繁體 | 简体
Main > Daily Market News > Article Content
| Print | Submit Article |
Last Page | More | Next Page
Keywords of this article:  medical 
To contact the supplier/company mentioned in this article, please email to:
More suppliers
Clariant launches medical polymer compounds resistant to hydrolytic degradation.
Clariant launches medical polymer compounds resistant to hydrolytic degradation.
Working with a leading medical device manufacturer, Clariant Plastics & Coatings Healthcare Polymer Solutions has completed development and testing of new polymer materials specially formulated to resist degradation caused by exposure to high humidity and temperature. 

The new technology is especially important in resins that incorporate high loadings of radiopaque metals because these fillers are known to exacerbate the degradation effect.

The new compounds, marketed under the MEVOPUR brand name covering Clariant’s “medical grade” materials, are expected to be especially useful in applications like medical catheters. 

Catheters are typically made of relatively soft, flexible materials like polyether block amides (PEBA) or certain thermoplastic polyurethanes (TPU). These materials commonly contain metallic fillers like tungsten or tungsten carbide so that doctors and technicians can see the exact position of the catheter under X-ray fluoroscopy.

“The problem is,” explains Steve Duckworth, Global Head of Marketing & Business Development, “when these devices are exposed to heat and humidity over time, the polymer chains responsible for developing critical physical and mechanical properties become broken and the functionality of the device – and patient safety – may be seriously compromised.” 

According to Duckworth, these hydrolysis effects can occur even with very small quantities of moisture trapped on the surface of the polymer, filler ingredients, or on the pellets of the compound.

The Clariant solution is a combination of proprietary processing techniques and additives that, together, help to make the polymer resistant to hydrolytic degradation. Accelerated aging tests conducted on both extruded tubing and injection-molded test samples show significant improvement in resistance compared to unmodified materials.

One of the early indications of chain breakage (scission) is an increased melt flow index (MFI), or reduction in viscosity, as the chains become shorter. The MFI of a standard 74% tungsten-filled PEBA Shore 35D compound was compared to an otherwise equivalent MEVOPUR modified compound over a 26-week period. In just the first few weeks, there was a significant increase in melt fluidity of the standard resin, and after the 4th week, the MFI was no longer measurable. 

Over the same period, the modified MEVOPUR compound showed almost no change. The observed difference was even greater during testing when tungsten-carbide-filled materials were used.

When the same materials were molded into tensile-test bars and measured for tensile strength and elongation, the unmodified samples saw reduction of 20 to 25% in these critical properties over the 26-week test period, while the MEVOPUR samples remained near 100%. In further mechanical-properties testing, the difference in results for tungsten-carbide-filled materials was much more pronounced.

“The final quality and reliability of catheter components relies on the stability and predictability of polymer material properties over a wide range of conditions,” Duckworth says. “Our testing on the new MEVOPUR radiopaque compounds shows the risk of polymer degradation from hydrolysis can be significantly reduced so predictability can be restored.”
The MEVOPUR portfolio has included PEBA, TPU, PA12, along with various radiopaque fillers, for more than 10 years. Fluoropolymers were recently added to the portfolio.
Related Articles  
Clariant marks 10th anniversary of MEVOPUR...
Clariant MEVOPUR medical compounding plant...
Clariant MEVOPUR and REMAFIN-EP support Ch...
Within the GMP framework, how can Demag in...
INEOS and UPM Biofuels announce supply agr...
Plastics industry supporting to fight coro...
We are collecting readers' comment for improving our website. If you are willing to help, please CLICK HERE to complete a survey. Your comments matter.
Write a mail to the editor

Copyright © Adsale Publishing Limited. Any party needs to reprint any part of the content should get the written approval from Adsale Publishing Ltd and quote the source "China Plastic & Rubber Journal (CPRJ)", Adsale Plastics Website - We reserve the right to take legal action against any party who reprints any part of this article without acknowledgement. For enquiry, please contact Editorial Department.  [Want to use this report?]
Company Name
Job title
Email (will not be published)
Recent Comment
Legal Statement | Privacy Policy
Remarks: Publication of the comments is at editor's discretion.
Register a New Member

Supplier Highlights