Search History
Clear History
{{item.search_key}}
Hot Searches
Change
{{item.name}}
{{item.english_name}}
Subscribe Weekly eNewsletter
Once A Week Once Every Two Weeks
Login Register

Applications

McDonald’s in São Paulo showcases advanced eco-building components

First bio-attributed prosthetic foot shell made of 100% renewable PVC

Toray and Honda validate chemical recycling of GFR nylon 6 auto parts

Products

Pay on production hours: KraussMaffei offers flexible usage-based payment model

Advanced Technologies for Continuous Production of Battery Masses

SI Group launches high-performance curative for adhesives

Activities

  • Round Table at Fakuma 2023: “Plastic – Recyclable Rather Than Problem Material!”

  • ArabPlast 2023 – The Success Journey Continues………..

  • GREAT NEWS! INAPA 2023 IS COMING BACK 24 - 26 May 2023 at JIExpo Jakarta, Indonesia

Pictorial

Industry And Market

ASEAN: The Next Manufacturing Hub

Innovative and Sustainable Packaging

Recycling and Circular Economy

CHINAPLAS

CHINAPLAS 2023 Focus

Conference Videos

[Webinar playback] SABIC WEBINAR: Collaborate to Create a Circular Economy for Plastics

COMBIMOULD® Multicomponent Injection Molding from Wittmann

[Mandarin Session] Beyond plastics to the new possibilities-PLASTRON® LFT for metal replacement

News Videos

A glimpse of WINTEC open house 2023

The 5th Edition CPRJ Medical Plastics Conference held with fruitful results

FCS All-Electric IMM automatically display 48 cavity bottle cap

Home > News > Recycling

Cambridge researchers turn CO2 and plastic waste into clean, sustainable fuels

Source:Adsale Plastics Network Date :2023-06-28 Editor :JK

Researchers from the University of Cambridge lately developed a solar-powered reactor that converts captured CO2 and plastic waste into sustainable fuels and other valuable chemical products. In tests, CO2 was converted into syngas, a key building block for sustainable liquid fuels, and plastic bottles were converted into glycolic acid, which is widely used in the cosmetics industry.

 

Unlike earlier tests of their solar fuels technology however, the team took CO2 from real-world sources – such as industrial exhaust or the air itself. The researchers were able to capture and concentrate the CO2 and convert it into sustainable fuel.

 

Although improvements are needed before this technology can be used at an industrial scale, the results, reported in the journal Joule, represent another important step toward the production of clean fuels to power the economy, without the need for environmentally destructive oil and gas extraction.

 

For several years, Professor Erwin Reisner’s research group, based in the Yusuf Hamied Department of Chemistry, has been developing sustainable, net-zero carbon fuels inspired by photosynthesis - the process by which plants convert sunlight into food - using artificial leaves. These artificial leaves convert CO2 and water into fuels using just the power of the sun.

 

To date, their solar-driven experiments have used pure, concentrated CO2 from a cylinder, but for the technology to be of practical use, it needs to be able to actively capture CO2 from industrial processes, or directly from the air. However, since CO2 is just one of many types of molecules in the air we breathe, making this technology selective enough to convert highly diluted CO2 is a huge technical challenge.


sustainable fuel

Researchers demonstrate how CO2 can be captured from industrial processes – or even directly from the air – and transformed into clean, sustainable fuels.


Carbon capture and utilization 

 

The researchers took their inspiration from carbon capture and storage (CCS), where CO2 is captured and then pumped and stored underground. “CCS is a technology that’s popular with the fossil fuel industry as a way to reduce carbon emissions while continuing oil and gas exploration,” stated Reisner.

 

“But if instead of carbon capture and storage, we had carbon capture and utilization, we could make something useful from CO2 instead of burying it underground, with unknown long-term consequences, and eliminate the use of fossil fuels.”

 

The researchers adapted their solar-driven technology so that it works with flue gas or directly from the air, converting CO2 and plastics into fuel and chemicals using only the power of the sun.

 

By bubbling air through the system containing an alkaline solution, the CO2 selectively gets trapped, and the other gases present in air, such as nitrogen and oxygen, harmlessly bubble out. This bubbling process allows the researchers to concentrate the CO2 from air in solution, making it easier to work with.

 

The integrated system contains a photocathode and an anode. The system has two compartments: on one side is captured CO2 solution that gets converted into syngas, a simple fuel. On the other plastics are converted into useful chemicals using only sunlight. 

 

“The plastic component is an important trick to this system,” explained co-first author Dr Motiar Rahaman. “Capturing and using CO2 from the air makes the chemistry more difficult. But, if we add plastic waste to the system, the plastic donates electrons to the CO2. The plastic breaks down to glycolic acid, which is widely used in the cosmetics industry, and the CO2 is converted into syngas, which is a simple fuel.”

 

The scientists are currently working on a bench-top demonstrator device with improved efficiency and practicality to highlight the benefits of coupling direct air capture with CO2 utilization as a path to a zero-carbon future.

 Like 丨  {{details_info.likes_count}}
Copyright:Original work. Please do not reprint.
Carbon neutral Circular economy

The content you're trying to view is for members only. If you are currently a member, Please login to access this content.   Login

Leave Comment

Submit

All Comments

No Comment

{{VueShowUserOrCompany(itme.user)}}

{{ toolTimes(itme.updated_at,'s') }}

{{itme.body}}

Reply   
Submit
{{VueShowUserOrCompany(itmes.user)}} {{ toolTimes(itmes.updated_at,'s') }} Reply

{{itmes.body}}

Submit

Recommended Articles

Recycling
Toray and Honda validate chemical recycling of GFR nylon 6 auto parts
 2023-09-28
Recycling
Lego drops plan to make bricks from rPET, challenge underlined
 2023-09-27
Recycling
Evonik and REMONDIS cooperate to recycle PU in mattress foams
 2023-09-26
Recycling
RAMPF pioneers direct upcycling for manufacturing aerogels from mixed PU-based scraps
 2023-09-26
Recycling
Local startup boosts upcycling of plastic waste in Singapore
 2023-09-21
Recycling
Innovative nylon fiber-to-fiber recycling for fishing nets on trial
 2023-09-01

You May Also Like

{{[item['category']['name'],item['category']['english_name']][lang]}}
{{VueShowUserOrCompany(item.author)}} {{VueShowDisplayName(item.author)}}   
Chat
Sponsored
{{item.title}} {{item['summary']}}
{{itags.name}}
{{item.updated_at}}
 {{item.likes_count}}       {{item.comments_count}}

You May Be Interested In

Change

  • People
  • Company
loading... No Content
{{[item.truename,item.truename_english][lang]}} {{[item.company_name,item.company_name_english][lang]}} {{[item.job_name,item.name_english][lang]}}
Add
{{[item.company_name,item.company_name_english][lang]}} Company Name    {{[item.display_name,item.display_name_english][lang]}}  
 Chat

Investment Medical Carbon neutral Reduce cost and increase efficiency Industry 4.0 CHINAPLAS Financial reports rPET INEOS Styrolution Evonik Borouge Polystyrene (PS) mono-material Sustainability Circular economy BASF SABIC Multi-component injection molding machine All-electric injection molding machine Thermoforming machine
Top
Feedback
Chat
News
Market News
Applications
Products
Video
In Pictures
Specials
Activities
eBook
Front Line
Plastics Applications
Chemicals and Raw Material
Processing Technologies
Products
Injection
Extrusion
Auxiliary
Blow Molding
Mold
Hot Runner
Screw
Applications
Packaging
Automotive
Medical
Recycling
E&E
LED
Construction
Others
Events
Conference
Webinar
CHINAPLAS
CPS+
Official Publications
CPS eNews
Media Kit
Social Media
Facebook
Wechat
Copyright©2023 AdsaleCPRJ.com All rights reserved.