Search History
Clear History
{{item.search_key}}
Hot Searches
Change
{{item.name}}
{{item.english_name}}
Subscribe eNews
Once A Week Once Every Two Weeks
{{sum}}
Login Register

Applications

FORVIA and Sinopec Capital partner to accelerate hydrogen growth in China

Mars Materials CO2-derived product can be turned into raw material for carbon fiber

Beijing Transwest Automation as exclusive Chinese distribution partner of EyeC

Products

Zhengzhou Huilin supplies odorless targeted odor control/deodorizer

Sesotec releases white paper on foreign object inspection with AI for food production

Arkema starts new Rilsan Clear transparent polyamide unit in Singapore

Activities

  • Fakuma to celebrate 30th anniversary edition in October 2026

  • Italy pavilion at Plast Eurasia proves its rising presence in Turkish market

  • CHINAPLAS 2026: Grand stage for new material, smart manufacturing and green solutions

Pictorial

Industry Topic

ASEAN: The Next Manufacturing Hub

Innovative and Sustainable Packaging

Green Plastics: News & Insights

CHINAPLAS

CHINAPLAS 2025 Focus

CHINAPLAS 2024 Focus

CHINAPLAS 2023 Focus

Exhibition Topic

CHINA INSIGHT

K 2025 FOCUS

Fakuma 2024 Highlights

News Videos

Haitian South China Headquarters opening

BEILIJIA Double Walled Corrugated Pipe Plant

Magnetic mold changing system developed in-house by Shanghai Qiaotian

Conference Videos

【Mandarin session: Webinar playback】SACMI: Your Digitalized Manufacturing, Your Future Today

[Live Replay] LK Group: Smart Manufacturing, New Chapters in Southeast Asia: High-Efficiency Solutions in PET Preform & Thin-Wall Packaging

[Live Replay] Fu Chun Shin (FCS): Data-Driven Digital Rebirth and Intelligent Future of Injection Molding

Corporate/Product Videos

Henan Hengfei - Pulse Mold Waterway Cleaning Machine

DR-24T Cap Compression Molding Machine

leading solutions for large diameter pipe extrusion

Exhibition

Playback TECHHUB 2025@CPRJ Live Streaming for CHINAPLAS

Playback TECHHUB@CPRJ Live Streaming for CHINAPLAS

Events

Playback On April 14, the "6th Edition CHINAPLAS x CPRJ Plastics Recycling and Circular Economy Conference and Showcase" at the Crowne Plaza Shenzhen Nanshan is currently being livestreamed!

Playback 5th Edition CHINAPLAS x CPRJ Plastics Recycling and Circular Economy Conference and Showcase

Home > News > Recycling

Eastman to study feasibility of closing loop in automotive supply chains

Source:Adsale Plastics Network Date :2021-08-06 Editor :JK

Eastman announced a collaboration with the United States Automotive Materials Partnership LLC (USAMP) and automotive recycler PADNOS for a concept feasibility study to demonstrate a closed-loop project to recycle automotive-industry mixed plastic waste in the automotive supply chains. USAMP is a subsidiary of the United States Council for Automotive Research LLC (USCAR). 

 

When automobiles are at the end of their life, metals, tires, and glass account for 80%-90% of the materials that can be recycled through traditional mechanical recycling streams. The other 10%-20%, referred to as automotive shedder residue (ASR), consists of mixed plastic and other non-recycled materials that currently end up in landfills or are recovered through waste-to-energy technologies.

 

Under this initiative, PADNOS will use ASR as a sustainable feedstock for Eastman's molecular recycling process, creating a truly circular solution.


1.jpg

Eastman collaborates with USAMP and PADNOS for fully circular recycling study in automotive market.


The study will also assess how well Eastman's carbon renewal technology (CRT), one of Eastman's two molecular recycling technologies, breaks down the plastic-rich fraction of ASR into molecular building blocks. By recycling these complex plastics in CRT, Eastman can replace fossil-based feedstock and create polymers without compromising performance for use in new automotive applications.

 

USAMP sees the potential for energy savings and reduced overall greenhouse gas emissions while eliminating a significant fraction of the 5-7 million tons of ASR generated annually in the United States from landfills.

 

"This 12-month automotive recycling project with Eastman and PADNOS is part of USAMP's broad materials research and sustainability program," said Steve Zimmer, executive director of USCAR. "Programs like this are critical to establishing a cost-effective pathway for addressing challenges associated with the consumption of ASR back into automotive parts to enable true industry circularity."

 

"Our molecular recycling technologies are recycling complex plastic waste at commercial scale now, but technologies alone won't build a circular economy - it takes work across the value chain by multiple players who are determined to deliver sustainable solutions," stated Steve Crawford, executive vice president, chief technology, and sustainability officer at Eastman. "That's why this project is so exciting."

 Like 丨  {{details_info.likes_count}}
Automotive
Recycling
Eastman
 SACMI (SHANGHAI) MACHINERY EQUIPMENT CO., LTD.      
 JUHESHUN ADVANCED MATERIALS CO., LTD.      
 SHANGHAI HAWKWAY PROCESS SOLUTIONS CO., LTD      
 GUANGXI HENGYI NEW MATERIALS CO., LTD.      
 GUANGXI WUZHOU GUOLONG RECYCLABE RESOURCES DEVELOPMENT CO., LTD.      
 MOTAN TAICANG CO., LTD.      
 ANHUI ZHONGXIN HONGWEI TECHNOLOGY CO.,LTD      
 FUJIAN NAN'AN STAR RUBBER&PLASTIC MACHINERY CO., LTD.      
 GUANGDONG HTASO NEW MATERIALS TECHNOLOGY CO.,LTD      
 CHUZHOU SEP MATERIAL CO,LTD.      

The content you're trying to view is for members only. If you are currently a member, Please login to access this content.   Login

Source:Adsale Plastics Network Date :2021-08-06 Editor :JK

Eastman announced a collaboration with the United States Automotive Materials Partnership LLC (USAMP) and automotive recycler PADNOS for a concept feasibility study to demonstrate a closed-loop project to recycle automotive-industry mixed plastic waste in the automotive supply chains. USAMP is a subsidiary of the United States Council for Automotive Research LLC (USCAR). 

 

When automobiles are at the end of their life, metals, tires, and glass account for 80%-90% of the materials that can be recycled through traditional mechanical recycling streams. The other 10%-20%, referred to as automotive shedder residue (ASR), consists of mixed plastic and other non-recycled materials that currently end up in landfills or are recovered through waste-to-energy technologies.

 

Under this initiative, PADNOS will use ASR as a sustainable feedstock for Eastman's molecular recycling process, creating a truly circular solution.


1.jpg

Eastman collaborates with USAMP and PADNOS for fully circular recycling study in automotive market.


The study will also assess how well Eastman's carbon renewal technology (CRT), one of Eastman's two molecular recycling technologies, breaks down the plastic-rich fraction of ASR into molecular building blocks. By recycling these complex plastics in CRT, Eastman can replace fossil-based feedstock and create polymers without compromising performance for use in new automotive applications.

 

USAMP sees the potential for energy savings and reduced overall greenhouse gas emissions while eliminating a significant fraction of the 5-7 million tons of ASR generated annually in the United States from landfills.

 

"This 12-month automotive recycling project with Eastman and PADNOS is part of USAMP's broad materials research and sustainability program," said Steve Zimmer, executive director of USCAR. "Programs like this are critical to establishing a cost-effective pathway for addressing challenges associated with the consumption of ASR back into automotive parts to enable true industry circularity."

 

"Our molecular recycling technologies are recycling complex plastic waste at commercial scale now, but technologies alone won't build a circular economy - it takes work across the value chain by multiple players who are determined to deliver sustainable solutions," stated Steve Crawford, executive vice president, chief technology, and sustainability officer at Eastman. "That's why this project is so exciting."

全文内容需要订阅后才能阅读哦~
立即订阅

Recommended Articles

Recycling
Mars Materials CO2-derived product can be turned into raw material for carbon fiber
 2026-01-16
Recycling
Borealis and BlueAlp partner to advance chemical recycling
 2025-12-29
Recycling
SKZ launches research project “CloseT” for sustainable textile recycling
 2025-12-18
Recycling
RadiciGroup, LYCRA and Triumph recycle mixed-fiber garments
 2025-12-17
Recycling
TOMRA's flakes solutions boost post-consumer food tray-to-tray recycling
 2025-12-16
Recycling
BASF and partners to advance circularity in footwear with new TPU films
 2025-12-15

You May Be Interested In

Change

  • People
  • Company
loading... No Content
{{[item.truename,item.truename_english][lang]}} {{[item.company_name,item.company_name_english][lang]}} {{[item.job_name,item.name_english][lang]}}
{{[item.company_name,item.company_name_english][lang]}} Company Name    {{[item.display_name,item.display_name_english][lang]}}  

Polyurethane Investment Medical Carbon neutral Reduce cost and increase efficiency CHINAPLAS Financial reports rPET INEOS Styrolution Evonik Borouge Polystyrene (PS) mono-material Sustainability Circular economy BASF SABIC Multi-component injection molding machine All-electric injection molding machine Thermoforming machine

Eastman to study feasibility of closing loop in automotive supply chains

识别右侧二维码,进入阅读全文
下载
x 关闭
订阅
亲爱的用户,请填写一下信息
I have read and agree to the 《Terms of Use》 and 《Privacy Policy》
立即订阅
Top
Feedback
Chat
News
Market News
Applications
Products
Video
In Pictures
Specials
Activities
eBook
Front Line
Plastics Applications
Chemicals and Raw Material
Processing Technologies
Products
Injection
Extrusion
Auxiliary
Blow Molding
Mold
Hot Runner
Screw
Applications
Packaging
Automotive
Medical
Recycling
E&E
LED
Construction
Others
Events
Conference
Webinar
CHINAPLAS
CPS+ eMarketplace
Official Publications
CPS eNews
Media Kit
Social Media
Facebook
Linkedin