Search History
Clear History
{{item.search_key}}
Hot Searches
Change
{{item.name}}
{{item.english_name}}
Subscribe eNews
Once A Week Once Every Two Weeks
{{sum}}
Login Register

Applications

Trinseo launches all-acrylic latex binder for flexible flooring adhesives

Beaulieu Fibres supports CO2 footprint calculations for PP fibres in automotive parts

Simoldes Plastics and ELIX Polymers cooperate on recycled materials for automotive interior

Products

Arburg: Plastic is simply indispensable as a material

Rönesans invests US$2 billion PP production plant and terminal facility in Turkey

Arkema, AkzoNobel and Omya develop sustainable decorative paints with lower carbon footprint

Activities

  • Round Table at Fakuma 2023: “Plastic – Recyclable Rather Than Problem Material!”

  • ArabPlast 2023 – The Success Journey Continues………..

  • GREAT NEWS! INAPA 2023 IS COMING BACK 24 - 26 May 2023 at JIExpo Jakarta, Indonesia

Pictorial

Industry Topic

ASEAN: The Next Manufacturing Hub

Innovative and Sustainable Packaging

Green Plastics: News & Insights

CHINAPLAS

CHINAPLAS 2025 Focus

CHINAPLAS 2024 Focus

CHINAPLAS 2023 Focus

Exhibition Topic

CHINA INSIGHT

Fakuma 2024 Highlights

K 2022 FOCUS

News Videos

CHINAPLAS 2025: Bioplastics bloom in wide applications

Pengqiang: Exploring smart feature & core advantages of liquid energy-saving AC systems

CHINAPLAS 2025: Smart technologies drives new quality productive forces

Conference Videos

【Mandarin session:Webinar playback】Covestro: Next-generation flame-retardant medical polycarbonate solutions for housing applications

【Mandarin session:Webinar playback】Covestro: RE Material Solutions: Empowering electronics industry to fulfill new EPEAT standards and lower carbon footpint

【Mandarin session:Webinar playback】Covestro: Covestro's CMF Trends 2025+: Electronics, Automotive and Healthcare

Corporate/Product Videos

Jiangsu Liside New Material Co., Ltd.

Dow 45 years in China

Carbon Removal and Carbon Emission Reduction Tech Solution——Yuanchu Technology (Beijing) Co. Ltd.

Exhibition

Playback TECHHUB 2025@CPRJ Live Streaming for CHINAPLAS

Playback TECHHUB@CPRJ Live Streaming for CHINAPLAS

Events

Playback On April 14, the "6th Edition CHINAPLAS x CPRJ Plastics Recycling and Circular Economy Conference and Showcase" at the Crowne Plaza Shenzhen Nanshan is currently being livestreamed!

Playback 5th Edition CHINAPLAS x CPRJ Plastics Recycling and Circular Economy Conference and Showcase

Home > News > Recycling

New efficient and cost-effective recycling process for carbon fiber

Source:Adsale Plastics Network Date :2021-05-24 Editor :JK

In recent years there has been an increased focus on the circular economy and a heightened demand for products made of recyclable materials, however many materials can only be recycled so many times before they begin to wear out.

 

This is the case with carbon fiber reinforced polymer (CFRP) composites, non-biodegradable materials which, until now, have lacked a viable recycling method.

 

CFRP composites are present in products such as wind turbines, aeroplane parts, vehicles such as cars and ships, and everyday technology such as laptops and mobile phones. They are typically disposed of in landfills or by incineration, which pose significant threats to both the environment and public health.

 

The vast majority of existing recycling methods also cause a major reduction in the mechanical and physical properties of the recovered material, weakening its core functionality.

 

Researchers from the University of Sydney’s School of Civil Engineering have developed an optimized method for recycling CFRP composites while maintaining 90% of their original strength.


1_web.jpg

CFRP composites applied in products such as wind turbines and aeroplane parts.


“To support a true circular economy, we developed an efficient and cost-effective method for recycling carbon fiber, which is present in tablets through to BMWs,” said the study’s lead researcher Dr Ali Hadigheh.

 

To do this, the researchers used a two phased, optimized process. The first step is called “pyrolysis”, which breaks down a material using heat, but significantly chars the materials which prevents it from developing a good bond with a resin matrix. And, the second process, oxidation, uses high temperatures to remove the char.

 

Pyrolysis and oxidation alone are not enough to preserve carbon fibers and these processes have existed for some time already. To ensure a high quality recovery and economic efficiency, thermal decomposition of CFRPs need to be guided by analyzing the energy required to initiate a chemical reaction in the composite and separate carbon fibers from the surrounding resin matrix.

 

“What makes our method so successful is that we have added specific parameters – such as temperature, heating rate, atmosphere or time spent being oxidized and heated – that preserve the functionality of carbon fiber,” explained Dr Ali Hadigheh.

 

The researchers embarked on the project with the aim of producing high grade, low cost structural materials made from recycled carbon fiber composites, for use in industries from aerospace and automotive through to sporting goods and renewable energy and construction.

 

In 2010, the global production of fiber reinforced polymers (FRP) was approximately 6 million tonnes with a projected growth of 300% in the next decade. With this projection, the consumption of FRPs will exceed 18 million tonnes by 2025, with an end-product value of AUD $80 billion.

 

“The 2016 Australian National Waste Report concludes that the use of composite materials is creating future challenges to recycling. Plainly put, if we do not develop efficient and cost-effective methods to recycle carbon fiber composites, we risk damaging the environment significantly,” concluded Dr Hadigheh.

 

Recycling of composite materials could be up to 70% cheaper and lead to a 90-95% reduction in CO2 emissions compared to standard manufacturing.

 

The United States, Japan and China lead the world in carbon fiber manufacturing. The researchers hope to increase the capacity of the Australian industry and work with manufacturers of wind turbines and commercial aircraft, as well as producers of sporting goods, and the construction, automotive and ship-building industries.

 Like 丨  {{details_info.likes_count}}
Recycling
Circular economy
Carbon fiber
 SACMI (SHANGHAI) MACHINERY EQUIPMENT CO., LTD.      
 JIANGXI ZHILIAN NEW MATERIALS CO., LTD      
 SHANGHAI PUSUN PLASTIC PRODUCTS CO., LTD      
 test(Deluxe Member)      
 SHANGHAI SMART NEW MATERIALS CO.,LTD      
 HANGZHOU JUHESHUN NEW MATERIAL CO., LTD.      
 WINDORA MATERIALS LLC      
 HEBEI MINGMAI TECHNOLOGY CO., LTD.      
 Quanzhou Juyuan Plastic Machinery Co.,Ltd.      
 QINGDAO HAIRUITE CHEMICAL MATERIAL CO., LTD      
 WUXI ADVANCE TECHNOLOGIES, INC      
 ANHUI SHANHE NEW MATERIAL CO., LTD.,      
 FUJIAN CHALLENGE WOLVES TECH. CO.,LTD      
 ZHEJIANG HAIGONG MACHINERY CO.,LTD      
 ZHANGJAGANG RONGSHENG MACHINERY CO.,LTD      
 JIANGYIN DEBAO NEW MATERIAL TECHNOLOGY CO.,LTD      
 ANHUI ZHONGXIN HONGWEI TECHNOLOGY CO.,LTD      
 AMOS COMPOSITES (GUANGDONG) CO., LTD      
 WUXI SONGHUXINRUI MACHINERY CO., LTD.      
 NINGBO JINGHAI PIGMENT CO., LTD      
 Shanghai DODGEN Chemical Technology Co., Ltd.      
 SHANGHAI QIRAIN NEW MATERIALS CO., LTD.      
 TAIZHOU HUANGYAN AOJIE PLASTIC MOULD CO., LTD.      

The content you're trying to view is for members only. If you are currently a member, Please login to access this content.   Login

Source:Adsale Plastics Network Date :2021-05-24 Editor :JK

In recent years there has been an increased focus on the circular economy and a heightened demand for products made of recyclable materials, however many materials can only be recycled so many times before they begin to wear out.

 

This is the case with carbon fiber reinforced polymer (CFRP) composites, non-biodegradable materials which, until now, have lacked a viable recycling method.

 

CFRP composites are present in products such as wind turbines, aeroplane parts, vehicles such as cars and ships, and everyday technology such as laptops and mobile phones. They are typically disposed of in landfills or by incineration, which pose significant threats to both the environment and public health.

 

The vast majority of existing recycling methods also cause a major reduction in the mechanical and physical properties of the recovered material, weakening its core functionality.

 

Researchers from the University of Sydney’s School of Civil Engineering have developed an optimized method for recycling CFRP composites while maintaining 90% of their original strength.


1_web.jpg

CFRP composites applied in products such as wind turbines and aeroplane parts.


“To support a true circular economy, we developed an efficient and cost-effective method for recycling carbon fiber, which is present in tablets through to BMWs,” said the study’s lead researcher Dr Ali Hadigheh.

 

To do this, the researchers used a two phased, optimized process. The first step is called “pyrolysis”, which breaks down a material using heat, but significantly chars the materials which prevents it from developing a good bond with a resin matrix. And, the second process, oxidation, uses high temperatures to remove the char.

 

Pyrolysis and oxidation alone are not enough to preserve carbon fibers and these processes have existed for some time already. To ensure a high quality recovery and economic efficiency, thermal decomposition of CFRPs need to be guided by analyzing the energy required to initiate a chemical reaction in the composite and separate carbon fibers from the surrounding resin matrix.

 

“What makes our method so successful is that we have added specific parameters – such as temperature, heating rate, atmosphere or time spent being oxidized and heated – that preserve the functionality of carbon fiber,” explained Dr Ali Hadigheh.

 

The researchers embarked on the project with the aim of producing high grade, low cost structural materials made from recycled carbon fiber composites, for use in industries from aerospace and automotive through to sporting goods and renewable energy and construction.

 

In 2010, the global production of fiber reinforced polymers (FRP) was approximately 6 million tonnes with a projected growth of 300% in the next decade. With this projection, the consumption of FRPs will exceed 18 million tonnes by 2025, with an end-product value of AUD $80 billion.

 

“The 2016 Australian National Waste Report concludes that the use of composite materials is creating future challenges to recycling. Plainly put, if we do not develop efficient and cost-effective methods to recycle carbon fiber composites, we risk damaging the environment significantly,” concluded Dr Hadigheh.

 

Recycling of composite materials could be up to 70% cheaper and lead to a 90-95% reduction in CO2 emissions compared to standard manufacturing.

 

The United States, Japan and China lead the world in carbon fiber manufacturing. The researchers hope to increase the capacity of the Australian industry and work with manufacturers of wind turbines and commercial aircraft, as well as producers of sporting goods, and the construction, automotive and ship-building industries.

全文内容需要订阅后才能阅读哦~
立即订阅

Leave Comment

Submit

All Comments

No Comment

{{VueShowUserOrCompany(itme.user)}}

{{ toolTimes(itme.updated_at,'s') }}

{{itme.body}}

Reply   
Submit
{{VueShowUserOrCompany(itmes.user)}} {{ toolTimes(itmes.updated_at,'s') }} Reply

{{itmes.body}}

Submit

Recommended Articles

Recycling
(CHINAPLAS Review) Onstage advanced technologies for chemical recycling
 2025-05-07
Recycling
Aduro and Siemens to deliver advanced automation for Hydrochemolytic pilot plant
 2025-05-07
Recycling
Clariant’s MegaMax 900 catalyst starts at European Energy’s e-methanol plant
 2025-04-28
Recycling
ENTEX: We are still at the beginning of the circular economy in many areas
 2025-04-28
Recycling
(Interview) Debut innovation from Nouryon transforms recycled plastic into high-quality materials
 2025-04-17
Recycling
Recycled Plastics Zone empowers businesses toward sustainability
 2025-04-16

You May Also Like

{{[item['category']['name'],item['category']['english_name']][lang]}}
{{VueShowUserOrCompany(item.author)}} {{VueShowDisplayName(item.author)}}
Sponsored
{{item.title}} {{item['summary']}}
{{itags.name}}
{{item.updated_at}}
 {{item.likes_count}}       {{item.comments_count}}

You May Be Interested In

Change

  • People
  • Company
loading... No Content
{{[item.truename,item.truename_english][lang]}} {{[item.company_name,item.company_name_english][lang]}} {{[item.job_name,item.name_english][lang]}}
{{[item.company_name,item.company_name_english][lang]}} Company Name    {{[item.display_name,item.display_name_english][lang]}}  

Polyurethane Investment Medical Carbon neutral Reduce cost and increase efficiency CHINAPLAS Financial reports rPET INEOS Styrolution Evonik Borouge Polystyrene (PS) mono-material Sustainability Circular economy BASF SABIC Multi-component injection molding machine All-electric injection molding machine Thermoforming machine

New efficient and cost-effective recycling process for carbon fiber

识别右侧二维码,进入阅读全文
下载
x 关闭
订阅
亲爱的用户,请填写一下信息
I have read and agree to the 《Terms of Use》 and 《Privacy Policy》
立即订阅
Top
Feedback
Chat
News
Market News
Applications
Products
Video
In Pictures
Specials
Activities
eBook
Front Line
Plastics Applications
Chemicals and Raw Material
Processing Technologies
Products
Injection
Extrusion
Auxiliary
Blow Molding
Mold
Hot Runner
Screw
Applications
Packaging
Automotive
Medical
Recycling
E&E
LED
Construction
Others
Events
Conference
Webinar
CHINAPLAS
CPS+ eMarketplace
Official Publications
CPS eNews
Media Kit
Social Media
Facebook
Youtube