Search History
Clear History
{{item.search_key}}
Hot Searches
Change
{{item.name}}
{{item.english_name}}
Subscribe eNews
Once A Week Once Every Two Weeks
{{sum}}
Login Register

Applications

TotalEnergies Corbion releases Life Cycle Assessment for recycled Luminy PLA

Yanfeng China selects ELIX Polymers’ PC/ABS for interior parts

Zespri launches home compostable label for kiwifruit

Products

Evonik localizes the final production step of POLYVEST ST-E 60 in Shanghai, China

Polyplastics to highlight new and sustainable solutions at K 2025

EREMA to show new PredictOn solution at K 2025

Activities

  • Round Table at Fakuma 2023: “Plastic – Recyclable Rather Than Problem Material!”

  • ArabPlast 2023 – The Success Journey Continues………..

  • GREAT NEWS! INAPA 2023 IS COMING BACK 24 - 26 May 2023 at JIExpo Jakarta, Indonesia

Pictorial

Industry Topic

ASEAN: The Next Manufacturing Hub

Innovative and Sustainable Packaging

Green Plastics: News & Insights

CHINAPLAS

CHINAPLAS 2025 Focus

CHINAPLAS 2024 Focus

CHINAPLAS 2023 Focus

Exhibition Topic

CHINA INSIGHT

Fakuma 2024 Highlights

K 2022 FOCUS

News Videos

KRAIBURG TPE Boosts Smart Skin Diagnostic Device Probe Protector with Innovative TPE Solutions

Pre K | Innovative silicone solutions from WACKER

Pre K | Envalior advanced TPC for shoe midsoles

Conference Videos

[Webinar playback] WANHUA: High-performance Specialty Plastics Enable High-quality Industrial and Life Applications

【Mandarin session:Webinar playback】Covestro: RE Material Solutions: Empowering electronics industry to fulfill new EPEAT standards and lower carbon footpint

【Mandarin session:Webinar playback】Covestro: Covestro's CMF Trends 2025+: Electronics, Automotive and Healthcare

Corporate/Product Videos

Jiangsu Liside New Material Co., Ltd.

Dow 45 years in China

Carbon Removal and Carbon Emission Reduction Tech Solution——Yuanchu Technology (Beijing) Co. Ltd.

Exhibition

Playback TECHHUB 2025@CPRJ Live Streaming for CHINAPLAS

Playback TECHHUB@CPRJ Live Streaming for CHINAPLAS

Events

Playback On April 14, the "6th Edition CHINAPLAS x CPRJ Plastics Recycling and Circular Economy Conference and Showcase" at the Crowne Plaza Shenzhen Nanshan is currently being livestreamed!

Playback 5th Edition CHINAPLAS x CPRJ Plastics Recycling and Circular Economy Conference and Showcase

Home > News > E&E

Invention of fully recyclable printed electronics aims to ease wastes

Source:Adsale Plastics Network Date :2021-04-30 Editor :JK

Engineers at Duke University have developed the world’s first fully recyclable printed electronics. By demonstrating a crucial and relatively complex computer component — the transistor — created with three carbon-based inks, the researchers hope to inspire a new generation of recyclable electronics to help fight the growing global epidemic of electronic waste.

 

According to a United Nations estimate, less than a quarter of the millions of pounds of electronics thrown away each year is recycled. And the problem is only going to get worse as the world upgrades to 5G devices and the Internet of Things (IoT) continues to expand.

 

Part of the problem is that electronic devices are difficult to recycle. While scraps of copper, aluminum and steel can be recycled, the silicon chips at the heart of the devices cannot.


1_web.jpg

A 3D rendering of the first fully recyclable, printed transistor.


In the new study, Franklin, the Addy Professor of Electrical and Computer Engineering at Duke, and his laboratory demonstrate a completely recyclable, fully functional transistor made out of three carbon-based inks that can be easily printed onto paper or other flexible, environmentally friendly surfaces. Carbon nanotubes and graphene inks are used for the semiconductors and conductors, respectively.

 

While these materials are not new to the world of printed electronics, Franklin stated, the path to recyclability was opened with the development of a wood-derived insulating dielectric ink called nanocellulose.

 

The researchers developed a method for suspending crystals of nanocellulose that were extracted from wood fibers that — with the sprinkling of a little table salt — yields an ink that performs admirably as an insulator in their printed transistors.

 

Using the three inks in an aerosol jet printer at room temperature, the team shows that their all-carbon transistors perform well enough for use in a wide variety of applications, even six months after the initial printing.


2_web.jpg

Researchers test a biosensor made out of fully recyclable, printed electronics.


The team then demonstrates just how recyclable their design is. By submerging their devices in a series of baths, gently vibrating them with sound waves and centrifuging the resulting solution, the carbon nanotubes and graphene are sequentially recovered with an average yield of nearly 100%.

 

Both materials can then be reused in the same printing process while losing very little of their performance viability. And because the nanocellulose is made from wood, it can simply be recycled along with the paper it was printed on.

 

Compared to a resistor or capacitor, a transistor is a relatively complex computer component used in devices such as power control or logic circuits and various sensors.

 

Franklin explained that, by demonstrating a fully recyclable, multifunctional printed transistor first, he hopes to make a first step toward the technology being commercially pursued for simple devices.

 

For example, Franklin said he could imagine the technology being used in a large building needing thousands of simple environmental sensors to monitor its energy use or customized biosensing patches for tracking medical conditions.

 

The work appears online April 26 in the journal Nature Electronics. It was supported by the Department of Defense Congressionally Directed Medical Research Program (W81XWH-17-2-0045), the National Institutes of Health (1R01HL146849) and the Air Force Office of Scientific Research (FA9550-18-1-0222).

 Like 丨  {{details_info.likes_count}}
Recycling
E&E
 SACMI (SHANGHAI) MACHINERY EQUIPMENT CO., LTD.      
 JIANGXI ZHILIAN NEW MATERIALS CO., LTD      
 SHANGHAI PUSUN PLASTIC PRODUCTS CO., LTD      
 SHANGHAI SMART NEW MATERIALS CO.,LTD      
 HANGZHOU JUHESHUN NEW MATERIAL CO., LTD.      
 WINDORA MATERIALS LLC      
 Quanzhou Juyuan Plastic Machinery Co.,Ltd.      
 QINGDAO HAIRUITE CHEMICAL MATERIAL CO., LTD      
 WUXI ADVANCE TECHNOLOGIES, INC      
 ANHUI SHANHE NEW MATERIAL CO., LTD.,      
 FUJIAN CHALLENGE WOLVES TECH. CO.,LTD      
 ZHEJIANG HAIGONG MACHINERY CO.,LTD      
 ZHANGJAGANG RONGSHENG MACHINERY CO.,LTD      
 JIANGYIN DEBAO NEW MATERIAL TECHNOLOGY CO.,LTD      
 ANHUI ZHONGXIN HONGWEI TECHNOLOGY CO.,LTD      
 WUXI SONGHUXINRUI MACHINERY CO., LTD.      
 NINGBO JINGHAI PIGMENT CO., LTD      
 Shanghai DODGEN Chemical Technology Co., Ltd.      
 SHANGHAI QIRAIN NEW MATERIALS CO., LTD.      

The content you're trying to view is for members only. If you are currently a member, Please login to access this content.   Login

Source:Adsale Plastics Network Date :2021-04-30 Editor :JK

Engineers at Duke University have developed the world’s first fully recyclable printed electronics. By demonstrating a crucial and relatively complex computer component — the transistor — created with three carbon-based inks, the researchers hope to inspire a new generation of recyclable electronics to help fight the growing global epidemic of electronic waste.

 

According to a United Nations estimate, less than a quarter of the millions of pounds of electronics thrown away each year is recycled. And the problem is only going to get worse as the world upgrades to 5G devices and the Internet of Things (IoT) continues to expand.

 

Part of the problem is that electronic devices are difficult to recycle. While scraps of copper, aluminum and steel can be recycled, the silicon chips at the heart of the devices cannot.


1_web.jpg

A 3D rendering of the first fully recyclable, printed transistor.


In the new study, Franklin, the Addy Professor of Electrical and Computer Engineering at Duke, and his laboratory demonstrate a completely recyclable, fully functional transistor made out of three carbon-based inks that can be easily printed onto paper or other flexible, environmentally friendly surfaces. Carbon nanotubes and graphene inks are used for the semiconductors and conductors, respectively.

 

While these materials are not new to the world of printed electronics, Franklin stated, the path to recyclability was opened with the development of a wood-derived insulating dielectric ink called nanocellulose.

 

The researchers developed a method for suspending crystals of nanocellulose that were extracted from wood fibers that — with the sprinkling of a little table salt — yields an ink that performs admirably as an insulator in their printed transistors.

 

Using the three inks in an aerosol jet printer at room temperature, the team shows that their all-carbon transistors perform well enough for use in a wide variety of applications, even six months after the initial printing.


2_web.jpg

Researchers test a biosensor made out of fully recyclable, printed electronics.


The team then demonstrates just how recyclable their design is. By submerging their devices in a series of baths, gently vibrating them with sound waves and centrifuging the resulting solution, the carbon nanotubes and graphene are sequentially recovered with an average yield of nearly 100%.

 

Both materials can then be reused in the same printing process while losing very little of their performance viability. And because the nanocellulose is made from wood, it can simply be recycled along with the paper it was printed on.

 

Compared to a resistor or capacitor, a transistor is a relatively complex computer component used in devices such as power control or logic circuits and various sensors.

 

Franklin explained that, by demonstrating a fully recyclable, multifunctional printed transistor first, he hopes to make a first step toward the technology being commercially pursued for simple devices.

 

For example, Franklin said he could imagine the technology being used in a large building needing thousands of simple environmental sensors to monitor its energy use or customized biosensing patches for tracking medical conditions.

 

The work appears online April 26 in the journal Nature Electronics. It was supported by the Department of Defense Congressionally Directed Medical Research Program (W81XWH-17-2-0045), the National Institutes of Health (1R01HL146849) and the Air Force Office of Scientific Research (FA9550-18-1-0222).

全文内容需要订阅后才能阅读哦~
立即订阅

Recommended Articles

E&E
ASMPT introduces integration platform for data exchange in electronics manufacturing
 2025-05-30
E&E
Teijin’s biomass PC selected for camera lenses production
 2025-04-25
E&E
Collaboration to use biomass plastics in home appliances
 2025-03-04
E&E
Covestro and WNC partner in driving circularity for communications industry
 2025-01-10
E&E
DuPont and Zhen Ding to advance PCBs technology
 2024-11-01
E&E
PCR plastic incorporated in Fairphone 5 detachable back cover
 2024-10-09

You May Be Interested In

Change

  • People
  • Company
loading... No Content
{{[item.truename,item.truename_english][lang]}} {{[item.company_name,item.company_name_english][lang]}} {{[item.job_name,item.name_english][lang]}}
{{[item.company_name,item.company_name_english][lang]}} Company Name    {{[item.display_name,item.display_name_english][lang]}}  

Polyurethane Investment Medical Carbon neutral Reduce cost and increase efficiency CHINAPLAS Financial reports rPET INEOS Styrolution Evonik Borouge Polystyrene (PS) mono-material Sustainability Circular economy BASF SABIC Multi-component injection molding machine All-electric injection molding machine Thermoforming machine

Invention of fully recyclable printed electronics aims to ease wastes

识别右侧二维码,进入阅读全文
下载
x 关闭
订阅
亲爱的用户,请填写一下信息
I have read and agree to the 《Terms of Use》 and 《Privacy Policy》
立即订阅
Top
Feedback
Chat
News
Market News
Applications
Products
Video
In Pictures
Specials
Activities
eBook
Front Line
Plastics Applications
Chemicals and Raw Material
Processing Technologies
Products
Injection
Extrusion
Auxiliary
Blow Molding
Mold
Hot Runner
Screw
Applications
Packaging
Automotive
Medical
Recycling
E&E
LED
Construction
Others
Events
Conference
Webinar
CHINAPLAS
CPS+ eMarketplace
Official Publications
CPS eNews
Media Kit
Social Media
Facebook
Youtube