Search History
Clear History
{{item.search_key}}
Hot Searches
Change
{{item.name}}
{{item.english_name}}
Subscribe eNews
Once A Week Once Every Two Weeks
{{sum}}
Login Register

Applications

Greiner Packaging wins two WorldStar 2026 Global Packaging Awards

BoReTech PET recycling technology receives positive EFSA scientific opinion

HRC and SACC sign partnership agreement on composite parts for Airbus A220 wing body

Products

WITTMANN central material supply system reorganizes material handling in injection molding

Brückner BOPET line shines in India

A merchant with over 1000 second-hand high-quality plastic extruders

Activities

  • Fakuma to celebrate 30th anniversary edition in October 2026

  • Italy pavilion at Plast Eurasia proves its rising presence in Turkish market

  • CHINAPLAS 2026: Grand stage for new material, smart manufacturing and green solutions

Pictorial

Industry Topic

ASEAN: The Next Manufacturing Hub

Innovative and Sustainable Packaging

Green Plastics: News & Insights

CHINAPLAS

CHINAPLAS 2025 Focus

CHINAPLAS 2024 Focus

CHINAPLAS 2023 Focus

Exhibition Topic

CHINA INSIGHT

K 2025 FOCUS

Fakuma 2024 Highlights

News Videos

Haitian South China Headquarters opening

BEILIJIA Double Walled Corrugated Pipe Plant

Magnetic mold changing system developed in-house by Shanghai Qiaotian

Conference Videos

【Mandarin session: Webinar playback】SACMI: Your Digitalized Manufacturing, Your Future Today

[Live Replay] LK Group: Smart Manufacturing, New Chapters in Southeast Asia: High-Efficiency Solutions in PET Preform & Thin-Wall Packaging

[Live Replay] Fu Chun Shin (FCS): Data-Driven Digital Rebirth and Intelligent Future of Injection Molding

Corporate/Product Videos

Henan Hengfei - Pulse Mold Waterway Cleaning Machine

DR-24T Cap Compression Molding Machine

leading solutions for large diameter pipe extrusion

Exhibition

Playback TECHHUB 2025@CPRJ Live Streaming for CHINAPLAS

Playback TECHHUB@CPRJ Live Streaming for CHINAPLAS

Events

Playback On April 14, the "6th Edition CHINAPLAS x CPRJ Plastics Recycling and Circular Economy Conference and Showcase" at the Crowne Plaza Shenzhen Nanshan is currently being livestreamed!

Playback 5th Edition CHINAPLAS x CPRJ Plastics Recycling and Circular Economy Conference and Showcase

Home > News > 3D printing

3D-printed wound dressing improves treatment for burn, cancer patients

Source:Adsale Plastics Network Date :2023-06-21 Editor :JK
Copyright: Original work. Please do not reprint.

One of the challenges in treating burn victims is the frequency of dressing changes, which can be extremely painful. To bring relief to this and other problems, University of Waterloo researchers have created a new type of wound dressing material using advanced polymers.

 

This programmable 3D printed wound dressing could enhance the healing process for burn patients and have potential applications for drug delivery in cancer treatment as well as in the cosmetic industry.

 

"To treat burn victims, we can customize the shape using a 3D printer, secondly, the material has fine-tuned surface adhesion, which is a key feature," said Dr. Boxin Zhao, a professor in Waterloo's Department of Chemical Engineering. "The material can easily adhere to the skin and be taken off. It's a very delicate balance within the material to make the adhesion work."

 

In developing the dressing, the researchers conducted a 3D scan of the patient's face and body parts to customize it to an individual's needs. This enables the dressing to make good contact with surfaces like noses and fingers, making it ideal for creating personalized wound dressings for burn patients.


1_web.jpg

Researchers develop intelligent hydrogel materials for use as a reusable wound dressing.


The material also has applications for cancer treatment. In traditional chemotherapy treatment, a patient may need to be in a clinic for hours, which can be tiring and uncomfortable. This dressing can provide a constant drug release outside the clinic setting, alleviating some of the challenges associated with traditional methods.

 

The material used to create these smart dressings includes a biopolymer derived from seaweed, a thermally responsive polymer, and cellulose nanocrystals. The dressing's thermal responsiveness allows it to warm on the skin and gently lower to room temperature.

 

Additionally, when chilled in the fridge, the dressing expands but shrinks to a smaller size at body temperature, making it easier and less painful to remove. Also, the dressing is designed to provide time-release medication, allowing for longer-lasting pain relief.

 

"We also envision applications in the beauty and cosmetic industry," stated Zhao. "Cosmetologists can utilize 3D scanning technology to analyze their clients' facial features and customize hydrogel masks infused with specific facial and skin regimen products. Additionally, this innovative approach can benefit plastic surgeons."

 

This research is proof of concept for Zhao's Surface Science and Bio- nanomaterials Laboratory Group. The next step for Zhao's research group is to continue improving the material's properties to make it healthier and commercially viable.

 Like 丨  {{details_info.likes_count}}
Medical
3D prinitng
 MOTAN TAICANG CO., LTD.      
 SHANGHAI HUIDE SCIENCE AND TECHNOLOGY CO., LTD.      
 CHUZHOU SEP MATERIAL CO,LTD.      

The content you're trying to view is for members only. If you are currently a member, Please login to access this content.   Login

Source:Adsale Plastics Network Date :2023-06-21 Editor :JK
Copyright: Original work. Please do not reprint.

One of the challenges in treating burn victims is the frequency of dressing changes, which can be extremely painful. To bring relief to this and other problems, University of Waterloo researchers have created a new type of wound dressing material using advanced polymers.

 

This programmable 3D printed wound dressing could enhance the healing process for burn patients and have potential applications for drug delivery in cancer treatment as well as in the cosmetic industry.

 

"To treat burn victims, we can customize the shape using a 3D printer, secondly, the material has fine-tuned surface adhesion, which is a key feature," said Dr. Boxin Zhao, a professor in Waterloo's Department of Chemical Engineering. "The material can easily adhere to the skin and be taken off. It's a very delicate balance within the material to make the adhesion work."

 

In developing the dressing, the researchers conducted a 3D scan of the patient's face and body parts to customize it to an individual's needs. This enables the dressing to make good contact with surfaces like noses and fingers, making it ideal for creating personalized wound dressings for burn patients.


1_web.jpg

Researchers develop intelligent hydrogel materials for use as a reusable wound dressing.


The material also has applications for cancer treatment. In traditional chemotherapy treatment, a patient may need to be in a clinic for hours, which can be tiring and uncomfortable. This dressing can provide a constant drug release outside the clinic setting, alleviating some of the challenges associated with traditional methods.

 

The material used to create these smart dressings includes a biopolymer derived from seaweed, a thermally responsive polymer, and cellulose nanocrystals. The dressing's thermal responsiveness allows it to warm on the skin and gently lower to room temperature.

 

Additionally, when chilled in the fridge, the dressing expands but shrinks to a smaller size at body temperature, making it easier and less painful to remove. Also, the dressing is designed to provide time-release medication, allowing for longer-lasting pain relief.

 

"We also envision applications in the beauty and cosmetic industry," stated Zhao. "Cosmetologists can utilize 3D scanning technology to analyze their clients' facial features and customize hydrogel masks infused with specific facial and skin regimen products. Additionally, this innovative approach can benefit plastic surgeons."

 

This research is proof of concept for Zhao's Surface Science and Bio- nanomaterials Laboratory Group. The next step for Zhao's research group is to continue improving the material's properties to make it healthier and commercially viable.

全文内容需要订阅后才能阅读哦~
立即订阅

Recommended Articles

3D printing
No more waste! Turning spoiled milk into 3D printing material
 2026-01-13
3D printing
3D-printed sculptural coffee table with bio-based transparent polyamide
 2025-11-28
3D printing
Formnext: Modular 3D printing solution for large-format components from KraussMaffei
 2025-11-11
3D printing
Arburg withdraws from 3D printing business
 2025-09-15
3D printing
Stratasys and Shin Etsu launch silicone material for industrial 3D printing
 2025-07-23
3D printing
Stratasys launches new version of Fortus 450mc 3D printer
 2025-07-16

You May Be Interested In

Change

  • People
  • Company
loading... No Content
{{[item.truename,item.truename_english][lang]}} {{[item.company_name,item.company_name_english][lang]}} {{[item.job_name,item.name_english][lang]}}
{{[item.company_name,item.company_name_english][lang]}} Company Name    {{[item.display_name,item.display_name_english][lang]}}  

Polyurethane Investment Medical Carbon neutral Reduce cost and increase efficiency CHINAPLAS Financial reports rPET INEOS Styrolution Evonik Borouge Polystyrene (PS) mono-material Sustainability Circular economy BASF SABIC Multi-component injection molding machine All-electric injection molding machine Thermoforming machine

3D-printed wound dressing improves treatment for burn, cancer patients

识别右侧二维码,进入阅读全文
下载
x 关闭
订阅
亲爱的用户,请填写一下信息
I have read and agree to the 《Terms of Use》 and 《Privacy Policy》
立即订阅
Top
Feedback
Chat
News
Market News
Applications
Products
Video
In Pictures
Specials
Activities
eBook
Front Line
Plastics Applications
Chemicals and Raw Material
Processing Technologies
Products
Injection
Extrusion
Auxiliary
Blow Molding
Mold
Hot Runner
Screw
Applications
Packaging
Automotive
Medical
Recycling
E&E
LED
Construction
Others
Events
Conference
Webinar
CHINAPLAS
CPS+ eMarketplace
Official Publications
CPS eNews
Media Kit
Social Media
Facebook
Linkedin