Search History
Clear History
{{item.search_key}}
Hot Searches
Change
{{item.name}}
{{item.english_name}}
Subscribe eNews
Once A Week Once Every Two Weeks
{{sum}}
Login Register

Applications

Trinseo and RWDC jointly develop PHA dispersions for barrier coatings

US-ASEAN Business Council: Regional alignment is core to accelerate Southeast Asia’s circular economy

Franplast introduces biocompatible TPEs for medical sector

Products

WACKER opens technology center for specialty silanes in China

ENGEL opens clearmelt-Competence-Center for PUR projects

EuCIA launches Carbon Fiber Europe alliance

Activities

  • Fakuma to celebrate 30th anniversary edition in October 2026

  • Italy pavilion at Plast Eurasia proves its rising presence in Turkish market

  • CHINAPLAS 2026: Grand stage for new material, smart manufacturing and green solutions

Pictorial

Industry Topic

ASEAN: The Next Manufacturing Hub

Innovative and Sustainable Packaging

Green Plastics: News & Insights

CHINAPLAS

CHINAPLAS 2025 Focus

CHINAPLAS 2024 Focus

CHINAPLAS 2023 Focus

Exhibition Topic

K 2025 FOCUS

CHINA INSIGHT

Fakuma 2024 Highlights

News Videos

Magnetic mold changing system developed in-house by Shanghai Qiaotian

Xiamen LFT Composite's plastic solutions as alternative to steel

Ausell highlights car-to-car closed-loop recycling technology

Conference Videos

【Mandarin session:Webinar playback】HUSKY: Molding the Future of Drug Delivery: Solutions for the Evolving Autoinjector

[Live Replay] Star Plastics: A Global Solution Provider of Sustainable Material for Your Circular Economy.

[Live Replay] Wanhua Chemical: Green Horizons, Health Guardians - Advancing ESG and Low-Carbon Transition, Innovating Medical Material Solutions

Corporate/Product Videos

ARBURG new electric machine – ALLROUNDER TREND will start mass production in Pinghu, Zhejiang in 2026.

Jiangsu Liside New Material Co., Ltd.

Dow 45 years in China

Exhibition

Playback TECHHUB 2025@CPRJ Live Streaming for CHINAPLAS

Playback TECHHUB@CPRJ Live Streaming for CHINAPLAS

Events

Playback On April 14, the "6th Edition CHINAPLAS x CPRJ Plastics Recycling and Circular Economy Conference and Showcase" at the Crowne Plaza Shenzhen Nanshan is currently being livestreamed!

Playback 5th Edition CHINAPLAS x CPRJ Plastics Recycling and Circular Economy Conference and Showcase

Home > News > Recycling

Breakthrough: Chemists realize dissolving PET with electricity

Source:Adsale Plastics Network Date :2023-07-19 Editor :JK
Copyright: Original work. Please do not reprint.

Chemists at CU Boulder have developed a new way to recycle a common type of plastic found in soda bottles and other packaging. The team’s method relies on electricity and some nifty chemical reactions, and it’s simple enough that people can watch the plastic break apart in front of their eyes. 

 

The researchers described their new approach to chemical recycling in the journal Chem Catalysis. The study helps tackle the mounting problem of plastic trash around the world.

 

“We pat ourselves on the back when we toss something into the recycling bin, but most of that recyclable plastic never winds up being recycled,” said Luca, assistant professor in the Department of Chemistry. “We wanted to find out how we could recover molecular materials, the building blocks of plastics, so that we can use them again.”

 

In the new research, she and her colleagues got one step closer to doing just that. The group focused on PET. In small-scale lab experiments, the researchers mixed bits of that plastic with a special kind of molecule then applied a small electric voltage. Within minutes, the PET began to disintegrate.


The team has a lot more work to do before its recycling tool can take a realistic bite out of the world’s plastic trash problem. But it was still fun to watch the waste, which can stick around in garbage piles for centuries, disappear in a matter of hours or days, said study lead author Phuc Pham.


PET plastic

The researchers apply electricity to a solution containing ground up PET plastic.


Retrieve and reuse building blocks of plastics


“It was awesome to actually observe the reaction progress in real time,” said Pham, a doctoral student in chemistry. “The solution first turns a deep pink color, then becomes clear as the polymer breaks apart.”

 

Luca said it’s a whole new way of thinking about the possibilities of trash. Methods like melting plastic waste or dissolving it in acid can alter the material properties in the process.

 

“You end up changing the materials mechanically,” Luca said. “Using current methods of recycling, if you melt a plastic bottle, you can produce, for example, one of those disposable plastic bags that we now have to pay money for at the grocery store.”

 

She and her team, in contrast, want to find a way to use the basic ingredients from old plastic bottles to make new plastic bottles. It’s like smashing your Lego castle so that you can retrieve the blocks to create a whole new building.


plastic recycling


2b.jpg

The solution turns pink as the plastic begins to dissolve. The final step in the proccess is exposing the solution to oxygen, which turns it yellow and eventually back to clear as the plastic fully breaks down.


Use electrolysis process


To achieve that, the group turned to a process called electrolysis—or using electricity to break apart molecules. Chemists, for example, have long known that they can apply a voltage to beakers filled with water and salts to split those water molecules into hydrogen and oxygen gas.

 

But PET plastic is a lot harder to divide than water. In the new study, Pham ground up plastic bottles then mixed the powder into a solution. Next, he and his colleagues added an extra ingredient, a molecule known as [N-DMBI]+ salt, to the solution.

 

Pham explained that in the presence of electricity, this molecule forms a “reactive mediator” that can donate its extra electron to the PET, causing the grains of plastic to come undone. Think of it like the chemistry equivalent of delivering a karate chop to a wooden board.

 

The researchers are still trying to understand how exactly these reactions take place, but they were able to break down the PET into its basic building blocks—which the group could then recover and, potentially, use to make something new.

 

Deploying only tabletop equipment in their lab, the researchers reported that they could break down about 40 milligrams (a small pinch) of PET over several hours.

 Like 丨  {{details_info.likes_count}}
Recycling
PET
 SACMI (SHANGHAI) MACHINERY EQUIPMENT CO., LTD.      
 HANGZHOU JUHESHUN NEW MATERIAL CO., LTD.      
 GUANGXI WUZHOU GUOLONG RECYCLABE RESOURCES DEVELOPMENT CO., LTD.      
 ANHUI ZHONGXIN HONGWEI TECHNOLOGY CO.,LTD      

The content you're trying to view is for members only. If you are currently a member, Please login to access this content.   Login

Source:Adsale Plastics Network Date :2023-07-19 Editor :JK
Copyright: Original work. Please do not reprint.

Chemists at CU Boulder have developed a new way to recycle a common type of plastic found in soda bottles and other packaging. The team’s method relies on electricity and some nifty chemical reactions, and it’s simple enough that people can watch the plastic break apart in front of their eyes. 

 

The researchers described their new approach to chemical recycling in the journal Chem Catalysis. The study helps tackle the mounting problem of plastic trash around the world.

 

“We pat ourselves on the back when we toss something into the recycling bin, but most of that recyclable plastic never winds up being recycled,” said Luca, assistant professor in the Department of Chemistry. “We wanted to find out how we could recover molecular materials, the building blocks of plastics, so that we can use them again.”

 

In the new research, she and her colleagues got one step closer to doing just that. The group focused on PET. In small-scale lab experiments, the researchers mixed bits of that plastic with a special kind of molecule then applied a small electric voltage. Within minutes, the PET began to disintegrate.


The team has a lot more work to do before its recycling tool can take a realistic bite out of the world’s plastic trash problem. But it was still fun to watch the waste, which can stick around in garbage piles for centuries, disappear in a matter of hours or days, said study lead author Phuc Pham.


PET plastic

The researchers apply electricity to a solution containing ground up PET plastic.


Retrieve and reuse building blocks of plastics


“It was awesome to actually observe the reaction progress in real time,” said Pham, a doctoral student in chemistry. “The solution first turns a deep pink color, then becomes clear as the polymer breaks apart.”

 

Luca said it’s a whole new way of thinking about the possibilities of trash. Methods like melting plastic waste or dissolving it in acid can alter the material properties in the process.

 

“You end up changing the materials mechanically,” Luca said. “Using current methods of recycling, if you melt a plastic bottle, you can produce, for example, one of those disposable plastic bags that we now have to pay money for at the grocery store.”

 

She and her team, in contrast, want to find a way to use the basic ingredients from old plastic bottles to make new plastic bottles. It’s like smashing your Lego castle so that you can retrieve the blocks to create a whole new building.


plastic recycling


2b.jpg

The solution turns pink as the plastic begins to dissolve. The final step in the proccess is exposing the solution to oxygen, which turns it yellow and eventually back to clear as the plastic fully breaks down.


Use electrolysis process


To achieve that, the group turned to a process called electrolysis—or using electricity to break apart molecules. Chemists, for example, have long known that they can apply a voltage to beakers filled with water and salts to split those water molecules into hydrogen and oxygen gas.

 

But PET plastic is a lot harder to divide than water. In the new study, Pham ground up plastic bottles then mixed the powder into a solution. Next, he and his colleagues added an extra ingredient, a molecule known as [N-DMBI]+ salt, to the solution.

 

Pham explained that in the presence of electricity, this molecule forms a “reactive mediator” that can donate its extra electron to the PET, causing the grains of plastic to come undone. Think of it like the chemistry equivalent of delivering a karate chop to a wooden board.

 

The researchers are still trying to understand how exactly these reactions take place, but they were able to break down the PET into its basic building blocks—which the group could then recover and, potentially, use to make something new.

 

Deploying only tabletop equipment in their lab, the researchers reported that they could break down about 40 milligrams (a small pinch) of PET over several hours.

全文内容需要订阅后才能阅读哦~
立即订阅

Recommended Articles

Recycling
US-ASEAN Business Council: Regional alignment is core to accelerate Southeast Asia’s circular economy
 2025-12-02
Recycling
MAS launches flagship platform for food-grade PET recycling
 2025-12-01
Recycling
Swedish textile recycler to build gigascale factory in Vietnam
 2025-11-26
Recycling
Teijin uses solvent-based recycling to develop high-quality rPC
 2025-11-26
Recycling
Clariant catalysts support Europe-first waste-to-methanol plant
 2025-11-24
Recycling
Norway opens new national facility for plastic packaging sorting
 2025-11-21

You May Be Interested In

Change

  • People
  • Company
loading... No Content
{{[item.truename,item.truename_english][lang]}} {{[item.company_name,item.company_name_english][lang]}} {{[item.job_name,item.name_english][lang]}}
{{[item.company_name,item.company_name_english][lang]}} Company Name    {{[item.display_name,item.display_name_english][lang]}}  

Polyurethane Investment Medical Carbon neutral Reduce cost and increase efficiency CHINAPLAS Financial reports rPET INEOS Styrolution Evonik Borouge Polystyrene (PS) mono-material Sustainability Circular economy BASF SABIC Multi-component injection molding machine All-electric injection molding machine Thermoforming machine

Breakthrough: Chemists realize dissolving PET with electricity

识别右侧二维码,进入阅读全文
下载
x 关闭
订阅
亲爱的用户,请填写一下信息
I have read and agree to the 《Terms of Use》 and 《Privacy Policy》
立即订阅
Top
Feedback
Chat
News
Market News
Applications
Products
Video
In Pictures
Specials
Activities
eBook
Front Line
Plastics Applications
Chemicals and Raw Material
Processing Technologies
Products
Injection
Extrusion
Auxiliary
Blow Molding
Mold
Hot Runner
Screw
Applications
Packaging
Automotive
Medical
Recycling
E&E
LED
Construction
Others
Events
Conference
Webinar
CHINAPLAS
CPS+ eMarketplace
Official Publications
CPS eNews
Media Kit
Social Media
Facebook
Linkedin