Search History
Clear History
{{item.search_key}}
Hot Searches
Change
{{item.name}}
{{item.english_name}}
Subscribe eNews
Once A Week Once Every Two Weeks
{{sum}}
Login Register

Applications

Trinseo launches all-acrylic latex binder for flexible flooring adhesives

Beaulieu Fibres supports CO2 footprint calculations for PP fibres in automotive parts

Simoldes Plastics and ELIX Polymers cooperate on recycled materials for automotive interior

Products

Arburg: Plastic is simply indispensable as a material

Rönesans invests US$2 billion PP production plant and terminal facility in Turkey

Arkema, AkzoNobel and Omya develop sustainable decorative paints with lower carbon footprint

Activities

  • Round Table at Fakuma 2023: “Plastic – Recyclable Rather Than Problem Material!”

  • ArabPlast 2023 – The Success Journey Continues………..

  • GREAT NEWS! INAPA 2023 IS COMING BACK 24 - 26 May 2023 at JIExpo Jakarta, Indonesia

Pictorial

Industry Topic

ASEAN: The Next Manufacturing Hub

Innovative and Sustainable Packaging

Green Plastics: News & Insights

CHINAPLAS

CHINAPLAS 2025 Focus

CHINAPLAS 2024 Focus

CHINAPLAS 2023 Focus

Exhibition Topic

CHINA INSIGHT

Fakuma 2024 Highlights

K 2022 FOCUS

News Videos

CHINAPLAS 2025: Bioplastics bloom in wide applications

Pengqiang: Exploring smart feature & core advantages of liquid energy-saving AC systems

CHINAPLAS 2025: Smart technologies drives new quality productive forces

Conference Videos

【Mandarin session:Webinar playback】Covestro: Next-generation flame-retardant medical polycarbonate solutions for housing applications

【Mandarin session:Webinar playback】Covestro: RE Material Solutions: Empowering electronics industry to fulfill new EPEAT standards and lower carbon footpint

【Mandarin session:Webinar playback】Covestro: Covestro's CMF Trends 2025+: Electronics, Automotive and Healthcare

Corporate/Product Videos

Jiangsu Liside New Material Co., Ltd.

Dow 45 years in China

Carbon Removal and Carbon Emission Reduction Tech Solution——Yuanchu Technology (Beijing) Co. Ltd.

Exhibition

Playback TECHHUB 2025@CPRJ Live Streaming for CHINAPLAS

Playback TECHHUB@CPRJ Live Streaming for CHINAPLAS

Events

Playback On April 14, the "6th Edition CHINAPLAS x CPRJ Plastics Recycling and Circular Economy Conference and Showcase" at the Crowne Plaza Shenzhen Nanshan is currently being livestreamed!

Playback 5th Edition CHINAPLAS x CPRJ Plastics Recycling and Circular Economy Conference and Showcase

Home > News > Recycling

Novel catalyst transforms plastic waste to fuels at low temperature

Source:Osaka City University Date :2021-01-08 Editor :

For the first time, researchers have used a novel catalyst process to recycle a type of plastic found in everything from grocery bags and food packaging to toys and electronics into liquid fuels and wax. The team published their results on Dec. 10, 2020 in Applied Catalysis B: Environmental.

 

“Plastics are essential materials for our life because they bring safety and hygiene to our society,” said paper co-authors Masazumi Tamura, associate professor in the Research Center for Artificial Photosynthesis in the Advanced Research Institute for Natural Science and Technology in Osaka City University, and Keiichi Tomishige, professor in the Graduate School of Engineering in Tohoku University. “However, the growth of the global plastic production and the rapid penetration of plastics into our society brought mismanagement of waste plastics, causing serious environmental and biological issues such as ocean pollution.”

 

Polyolefinic plastics — the most common plastic — have physical properties that make it difficult for a catalyst, responsible for inducing chemical transformation, to interact directly with the molecular elements to cause a change.


1_web.jpg


Current recycling efforts require temperatures of at least 573 degrees Kelvin, and up to 1,173 degrees Kelvin. For comparison, water boils at 373.15 degrees Kelvin, and the surface of the Sun is 5,778 degrees Kelvin.

 

The researchers looked to heterogenous catalysts in an effort to find a reaction that might require a lower temperature to activate. By using a catalyst in a different state of matter than the plastics, they hypothesized that the reaction would be stronger at a lower temperature.

 

They combined ruthenium, a metal in the platinum family, with cerium dioxide, used to polish glass among other applications, to produce a catalyst that caused the plastics to react at 473 degrees Kelvin. While still high for human sensibilities, it requires significantly less energy input compared to other catalyst systems.

 

According to Tamura, ruthenium-based catalysts have never been reported in the scientific literature as a way to directly recycle polyolefinic plastics.

 

“Our approach acted as an effective and reusable heterogeneous catalyst, showing much higher activity than other metal-supported catalysts, working even under mild reaction conditions,” Tamura and Tomishige said. “Furthermore, a plastic bag and waste plastics could be transformed to valuable chemicals in high yields.”

 

The researchers processed a plastic bag and waste plastics with the catalyst, producing a 92% yield of useful materials, including a 77% yield of liquid fuel and a 15% yield of wax.

 

“This catalyst system is expected to contribute to not only suppression of plastic wastes but also to utilization of plastic wastes as raw materials for production of chemicals,” Tamura said.

 

Other contributors include Yosuke Nakaji, Shuhei Miyaoka and Yoshinao Nakagawa, all affiliated with the Graduate School of Engineering at Tohoku University; and Shogo Kumagai, Mifumi Tanji and Toshiaki Yoshioka, all affiliated with the Graduate School of Environmental Studies at Tohoku University.

 Like 丨  {{details_info.likes_count}}
Catalyst
Recycling
 SACMI (SHANGHAI) MACHINERY EQUIPMENT CO., LTD.      
 JIANGXI ZHILIAN NEW MATERIALS CO., LTD      
 SHANGHAI PUSUN PLASTIC PRODUCTS CO., LTD      
 test(Deluxe Member)      
 SHANGHAI SMART NEW MATERIALS CO.,LTD      
 HANGZHOU JUHESHUN NEW MATERIAL CO., LTD.      
 WINDORA MATERIALS LLC      
 HEBEI MINGMAI TECHNOLOGY CO., LTD.      
 Quanzhou Juyuan Plastic Machinery Co.,Ltd.      
 QINGDAO HAIRUITE CHEMICAL MATERIAL CO., LTD      
 WUXI ADVANCE TECHNOLOGIES, INC      
 ANHUI SHANHE NEW MATERIAL CO., LTD.,      
 FUJIAN CHALLENGE WOLVES TECH. CO.,LTD      
 ZHEJIANG HAIGONG MACHINERY CO.,LTD      
 ZHANGJAGANG RONGSHENG MACHINERY CO.,LTD      
 SHINY MATERIALS SCIENCE & TECHNOLOGY INC      
 JIANGYIN DEBAO NEW MATERIAL TECHNOLOGY CO.,LTD      
 ANHUI ZHONGXIN HONGWEI TECHNOLOGY CO.,LTD      
 WUXI SONGHUXINRUI MACHINERY CO., LTD.      
 NINGBO JINGHAI PIGMENT CO., LTD      
 Shanghai DODGEN Chemical Technology Co., Ltd.      
 SHANGHAI QIRAIN NEW MATERIALS CO., LTD.      
 TAIZHOU HUANGYAN AOJIE PLASTIC MOULD CO., LTD.      

The content you're trying to view is for members only. If you are currently a member, Please login to access this content.   Login

Source:Osaka City University Date :2021-01-08 Editor :

For the first time, researchers have used a novel catalyst process to recycle a type of plastic found in everything from grocery bags and food packaging to toys and electronics into liquid fuels and wax. The team published their results on Dec. 10, 2020 in Applied Catalysis B: Environmental.

 

“Plastics are essential materials for our life because they bring safety and hygiene to our society,” said paper co-authors Masazumi Tamura, associate professor in the Research Center for Artificial Photosynthesis in the Advanced Research Institute for Natural Science and Technology in Osaka City University, and Keiichi Tomishige, professor in the Graduate School of Engineering in Tohoku University. “However, the growth of the global plastic production and the rapid penetration of plastics into our society brought mismanagement of waste plastics, causing serious environmental and biological issues such as ocean pollution.”

 

Polyolefinic plastics — the most common plastic — have physical properties that make it difficult for a catalyst, responsible for inducing chemical transformation, to interact directly with the molecular elements to cause a change.


1_web.jpg


Current recycling efforts require temperatures of at least 573 degrees Kelvin, and up to 1,173 degrees Kelvin. For comparison, water boils at 373.15 degrees Kelvin, and the surface of the Sun is 5,778 degrees Kelvin.

 

The researchers looked to heterogenous catalysts in an effort to find a reaction that might require a lower temperature to activate. By using a catalyst in a different state of matter than the plastics, they hypothesized that the reaction would be stronger at a lower temperature.

 

They combined ruthenium, a metal in the platinum family, with cerium dioxide, used to polish glass among other applications, to produce a catalyst that caused the plastics to react at 473 degrees Kelvin. While still high for human sensibilities, it requires significantly less energy input compared to other catalyst systems.

 

According to Tamura, ruthenium-based catalysts have never been reported in the scientific literature as a way to directly recycle polyolefinic plastics.

 

“Our approach acted as an effective and reusable heterogeneous catalyst, showing much higher activity than other metal-supported catalysts, working even under mild reaction conditions,” Tamura and Tomishige said. “Furthermore, a plastic bag and waste plastics could be transformed to valuable chemicals in high yields.”

 

The researchers processed a plastic bag and waste plastics with the catalyst, producing a 92% yield of useful materials, including a 77% yield of liquid fuel and a 15% yield of wax.

 

“This catalyst system is expected to contribute to not only suppression of plastic wastes but also to utilization of plastic wastes as raw materials for production of chemicals,” Tamura said.

 

Other contributors include Yosuke Nakaji, Shuhei Miyaoka and Yoshinao Nakagawa, all affiliated with the Graduate School of Engineering at Tohoku University; and Shogo Kumagai, Mifumi Tanji and Toshiaki Yoshioka, all affiliated with the Graduate School of Environmental Studies at Tohoku University.

全文内容需要订阅后才能阅读哦~
立即订阅

Leave Comment

Submit

All Comments

No Comment

{{VueShowUserOrCompany(itme.user)}}

{{ toolTimes(itme.updated_at,'s') }}

{{itme.body}}

Reply   
Submit
{{VueShowUserOrCompany(itmes.user)}} {{ toolTimes(itmes.updated_at,'s') }} Reply

{{itmes.body}}

Submit

Recommended Articles

Recycling
(CHINAPLAS Review) Onstage advanced technologies for chemical recycling
 2025-05-07
Recycling
Aduro and Siemens to deliver advanced automation for Hydrochemolytic pilot plant
 2025-05-07
Recycling
Clariant’s MegaMax 900 catalyst starts at European Energy’s e-methanol plant
 2025-04-28
Recycling
ENTEX: We are still at the beginning of the circular economy in many areas
 2025-04-28
Recycling
(Interview) Debut innovation from Nouryon transforms recycled plastic into high-quality materials
 2025-04-17
Recycling
Recycled Plastics Zone empowers businesses toward sustainability
 2025-04-16

You May Also Like

{{[item['category']['name'],item['category']['english_name']][lang]}}
{{VueShowUserOrCompany(item.author)}} {{VueShowDisplayName(item.author)}}
Sponsored
{{item.title}} {{item['summary']}}
{{itags.name}}
{{item.updated_at}}
 {{item.likes_count}}       {{item.comments_count}}

You May Be Interested In

Change

  • People
  • Company
loading... No Content
{{[item.truename,item.truename_english][lang]}} {{[item.company_name,item.company_name_english][lang]}} {{[item.job_name,item.name_english][lang]}}
{{[item.company_name,item.company_name_english][lang]}} Company Name    {{[item.display_name,item.display_name_english][lang]}}  

Polyurethane Investment Medical Carbon neutral Reduce cost and increase efficiency CHINAPLAS Financial reports rPET INEOS Styrolution Evonik Borouge Polystyrene (PS) mono-material Sustainability Circular economy BASF SABIC Multi-component injection molding machine All-electric injection molding machine Thermoforming machine

Novel catalyst transforms plastic waste to fuels at low temperature

识别右侧二维码,进入阅读全文
下载
x 关闭
订阅
亲爱的用户,请填写一下信息
I have read and agree to the 《Terms of Use》 and 《Privacy Policy》
立即订阅
Top
Feedback
Chat
News
Market News
Applications
Products
Video
In Pictures
Specials
Activities
eBook
Front Line
Plastics Applications
Chemicals and Raw Material
Processing Technologies
Products
Injection
Extrusion
Auxiliary
Blow Molding
Mold
Hot Runner
Screw
Applications
Packaging
Automotive
Medical
Recycling
E&E
LED
Construction
Others
Events
Conference
Webinar
CHINAPLAS
CPS+ eMarketplace
Official Publications
CPS eNews
Media Kit
Social Media
Facebook
Youtube