Search History
Clear History
{{item.search_key}}
Hot Searches
Change
{{item.name}}
{{item.english_name}}
Subscribe eNews
Once A Week Once Every Two Weeks
{{sum}}
Login Register

Applications

Trinseo launches all-acrylic latex binder for flexible flooring adhesives

Beaulieu Fibres supports CO2 footprint calculations for PP fibres in automotive parts

Simoldes Plastics and ELIX Polymers cooperate on recycled materials for automotive interior

Products

Arburg: Plastic is simply indispensable as a material

Rönesans invests US$2 billion PP production plant and terminal facility in Turkey

Arkema, AkzoNobel and Omya develop sustainable decorative paints with lower carbon footprint

Activities

  • Round Table at Fakuma 2023: “Plastic – Recyclable Rather Than Problem Material!”

  • ArabPlast 2023 – The Success Journey Continues………..

  • GREAT NEWS! INAPA 2023 IS COMING BACK 24 - 26 May 2023 at JIExpo Jakarta, Indonesia

Pictorial

Industry Topic

ASEAN: The Next Manufacturing Hub

Innovative and Sustainable Packaging

Green Plastics: News & Insights

CHINAPLAS

CHINAPLAS 2025 Focus

CHINAPLAS 2024 Focus

CHINAPLAS 2023 Focus

Exhibition Topic

CHINA INSIGHT

Fakuma 2024 Highlights

K 2022 FOCUS

News Videos

CHINAPLAS 2025: Bioplastics bloom in wide applications

Pengqiang: Exploring smart feature & core advantages of liquid energy-saving AC systems

CHINAPLAS 2025: Smart technologies drives new quality productive forces

Conference Videos

【Mandarin session:Webinar playback】Covestro: Next-generation flame-retardant medical polycarbonate solutions for housing applications

【Mandarin session:Webinar playback】Covestro: RE Material Solutions: Empowering electronics industry to fulfill new EPEAT standards and lower carbon footpint

【Mandarin session:Webinar playback】Covestro: Covestro's CMF Trends 2025+: Electronics, Automotive and Healthcare

Corporate/Product Videos

Jiangsu Liside New Material Co., Ltd.

Dow 45 years in China

Carbon Removal and Carbon Emission Reduction Tech Solution——Yuanchu Technology (Beijing) Co. Ltd.

Exhibition

Playback TECHHUB 2025@CPRJ Live Streaming for CHINAPLAS

Playback TECHHUB@CPRJ Live Streaming for CHINAPLAS

Events

Playback On April 14, the "6th Edition CHINAPLAS x CPRJ Plastics Recycling and Circular Economy Conference and Showcase" at the Crowne Plaza Shenzhen Nanshan is currently being livestreamed!

Playback 5th Edition CHINAPLAS x CPRJ Plastics Recycling and Circular Economy Conference and Showcase

Home > News > 3D printing

Scientists develop innovative wood-based materials for 3D printing

Source:Adsale Plastics Network Date :2020-08-25 Editor :JK

A viscous biopaste that is easy to process, solidifies quickly and is suitable for producing even complex structures using the 3D printing process has been developed by a research team headed by Prof. Dr. Marie-Pierre Laborie from the Chair of Forest Biomaterials at the University of Freiburg.

 

The wood-based biodegradable synthetic could potentially be used in lightweight construction, amongst other things. The scientists have published their initial results in the journals Applied Bio Materials and Biomacromolecules.

 

Lignin strengthens the cell walls of plants and causes them to turn woody (lignify) – a mechanism that helps plants to protect themselves against wind or pests. It is a waste product from paper manufacture and largely incinerated to produce bioenergy. “This is why we’re researching into alternative possibilities for making better use of this raw material in future,” says Laborie.


1_web.jpg

The biopaste used to print this cylinder consists of 50% lignin and 50% cellulose.


As a result, the team started to reexamine a combination of materials which was already investigated in the 1980s by an American research team. In this system, liquid crystals based on cellulose, the main component of plant cell walls, ensure not only the strength but also the good flow properties of the biopaste.

 

The other component, lignin, can ‘stick together’ the microstructure in the process of creating the biosynthetic, as Robert Gleuwitz discovered in his doctoral thesis. Its orientation subsequently determines the characteristics of the biosynthetic: for instance, it can respond more rigidly or more flexibly, depending on the direction from which the force comes.

 

Further research work will however be necessary until industrial application is possible, for example as a composite in lightweight construction. Until now the team has used exceptionally pure lignin which is produced in a pilot biorefinery at the Fraunhofer Center for Chemical-Biotechnological Processes (CBP) in Leuna – whether the waste product from the paper industry can also be directly processed still has to be researched.

 

As Lisa Ebers shows in her doctoral thesis, the characteristics of the biosynthetic can also be varied in many ways, for instance by chemically processing or varying the components: Trials to date have used lignin from beech trees – if it is obtained from other plants it will have slightly different material characteristics such as different liquid crystals, even though they are all based on cellulose. The optimal quantity ratios also differ depending on the planned application.

 

In addition, the researchers will soon be testing an entirely different possible use: the quality of soil can be analyzed with the help of the bio-based material. This takes place by studying the degradability of lignin and cellulose in various types of soil.

 

The results arose from a research project by the Sustainability Center Freiburg and the Fraunhofer Society. The research and 3D printing trials took place in cooperation with Prof. Dr. Dr. Christian Friedrich and Dr. Gopakumar Sivasankarapillai at the Freiburg Materials Research Center (FMF) of the University of Freiburg and with Dr. Gilberto Siqueira in the Swiss Federal Laboratories for Materials Testing and Research (EMPA) in Dübendorf, Switzerland.

 Like 丨  {{details_info.likes_count}}

The content you're trying to view is for members only. If you are currently a member, Please login to access this content.   Login

Source:Adsale Plastics Network Date :2020-08-25 Editor :JK

A viscous biopaste that is easy to process, solidifies quickly and is suitable for producing even complex structures using the 3D printing process has been developed by a research team headed by Prof. Dr. Marie-Pierre Laborie from the Chair of Forest Biomaterials at the University of Freiburg.

 

The wood-based biodegradable synthetic could potentially be used in lightweight construction, amongst other things. The scientists have published their initial results in the journals Applied Bio Materials and Biomacromolecules.

 

Lignin strengthens the cell walls of plants and causes them to turn woody (lignify) – a mechanism that helps plants to protect themselves against wind or pests. It is a waste product from paper manufacture and largely incinerated to produce bioenergy. “This is why we’re researching into alternative possibilities for making better use of this raw material in future,” says Laborie.


1_web.jpg

The biopaste used to print this cylinder consists of 50% lignin and 50% cellulose.


As a result, the team started to reexamine a combination of materials which was already investigated in the 1980s by an American research team. In this system, liquid crystals based on cellulose, the main component of plant cell walls, ensure not only the strength but also the good flow properties of the biopaste.

 

The other component, lignin, can ‘stick together’ the microstructure in the process of creating the biosynthetic, as Robert Gleuwitz discovered in his doctoral thesis. Its orientation subsequently determines the characteristics of the biosynthetic: for instance, it can respond more rigidly or more flexibly, depending on the direction from which the force comes.

 

Further research work will however be necessary until industrial application is possible, for example as a composite in lightweight construction. Until now the team has used exceptionally pure lignin which is produced in a pilot biorefinery at the Fraunhofer Center for Chemical-Biotechnological Processes (CBP) in Leuna – whether the waste product from the paper industry can also be directly processed still has to be researched.

 

As Lisa Ebers shows in her doctoral thesis, the characteristics of the biosynthetic can also be varied in many ways, for instance by chemically processing or varying the components: Trials to date have used lignin from beech trees – if it is obtained from other plants it will have slightly different material characteristics such as different liquid crystals, even though they are all based on cellulose. The optimal quantity ratios also differ depending on the planned application.

 

In addition, the researchers will soon be testing an entirely different possible use: the quality of soil can be analyzed with the help of the bio-based material. This takes place by studying the degradability of lignin and cellulose in various types of soil.

 

The results arose from a research project by the Sustainability Center Freiburg and the Fraunhofer Society. The research and 3D printing trials took place in cooperation with Prof. Dr. Dr. Christian Friedrich and Dr. Gopakumar Sivasankarapillai at the Freiburg Materials Research Center (FMF) of the University of Freiburg and with Dr. Gilberto Siqueira in the Swiss Federal Laboratories for Materials Testing and Research (EMPA) in Dübendorf, Switzerland.

全文内容需要订阅后才能阅读哦~
立即订阅

Leave Comment

Submit

All Comments

No Comment

{{VueShowUserOrCompany(itme.user)}}

{{ toolTimes(itme.updated_at,'s') }}

{{itme.body}}

Reply   
Submit
{{VueShowUserOrCompany(itmes.user)}} {{ toolTimes(itmes.updated_at,'s') }} Reply

{{itmes.body}}

Submit

Recommended Articles

3D printing
3D printing plastic market expected to grow in 2025-2031
 2025-03-12
3D printing
NatureWorks launches Ingeo 3D300 for 3D printing with enhanced efficiency and performance
 2025-02-26
3D printing
Can 3D-printed buildings withstand earthquake? Chinese researchers find out
 2025-02-20
3D printing
Stratasys introduces biocompatible materials for medical applications
 2025-02-04
3D printing
Easy 3D printing technique to make plastics with customized flexibility
 2025-01-07
3D printing
Stratasys becomes official 3D printing partner of NASCAR
 2025-01-06
  Rachel 管理员

You May Also Like

{{[item['category']['name'],item['category']['english_name']][lang]}}
{{VueShowUserOrCompany(item.author)}} {{VueShowDisplayName(item.author)}}
Sponsored
{{item.title}} {{item['summary']}}
{{itags.name}}
{{item.updated_at}}
 {{item.likes_count}}       {{item.comments_count}}

You May Be Interested In

Change

  • People
  • Company
loading... No Content
{{[item.truename,item.truename_english][lang]}} {{[item.company_name,item.company_name_english][lang]}} {{[item.job_name,item.name_english][lang]}}
{{[item.company_name,item.company_name_english][lang]}} Company Name    {{[item.display_name,item.display_name_english][lang]}}  

Polyurethane Investment Medical Carbon neutral Reduce cost and increase efficiency CHINAPLAS Financial reports rPET INEOS Styrolution Evonik Borouge Polystyrene (PS) mono-material Sustainability Circular economy BASF SABIC Multi-component injection molding machine All-electric injection molding machine Thermoforming machine

Scientists develop innovative wood-based materials for 3D printing

识别右侧二维码,进入阅读全文
下载
x 关闭
订阅
亲爱的用户,请填写一下信息
I have read and agree to the 《Terms of Use》 and 《Privacy Policy》
立即订阅
Top
Feedback
Chat
News
Market News
Applications
Products
Video
In Pictures
Specials
Activities
eBook
Front Line
Plastics Applications
Chemicals and Raw Material
Processing Technologies
Products
Injection
Extrusion
Auxiliary
Blow Molding
Mold
Hot Runner
Screw
Applications
Packaging
Automotive
Medical
Recycling
E&E
LED
Construction
Others
Events
Conference
Webinar
CHINAPLAS
CPS+ eMarketplace
Official Publications
CPS eNews
Media Kit
Social Media
Facebook
Youtube