Search History
Clear History
{{item.search_key}}
Hot Searches
Change
{{item.name}}
{{item.english_name}}
Subscribe eNews
Once A Week Once Every Two Weeks
{{sum}}
Login Register

Applications

Trinseo launches all-acrylic latex binder for flexible flooring adhesives

Beaulieu Fibres supports CO2 footprint calculations for PP fibres in automotive parts

Simoldes Plastics and ELIX Polymers cooperate on recycled materials for automotive interior

Products

Arburg: Plastic is simply indispensable as a material

Rönesans invests US$2 billion PP production plant and terminal facility in Turkey

Arkema, AkzoNobel and Omya develop sustainable decorative paints with lower carbon footprint

Activities

  • Round Table at Fakuma 2023: “Plastic – Recyclable Rather Than Problem Material!”

  • ArabPlast 2023 – The Success Journey Continues………..

  • GREAT NEWS! INAPA 2023 IS COMING BACK 24 - 26 May 2023 at JIExpo Jakarta, Indonesia

Pictorial

Industry Topic

ASEAN: The Next Manufacturing Hub

Innovative and Sustainable Packaging

Green Plastics: News & Insights

CHINAPLAS

CHINAPLAS 2025 Focus

CHINAPLAS 2024 Focus

CHINAPLAS 2023 Focus

Exhibition Topic

CHINA INSIGHT

Fakuma 2024 Highlights

K 2022 FOCUS

News Videos

CHINAPLAS 2025: Bioplastics bloom in wide applications

Pengqiang: Exploring smart feature & core advantages of liquid energy-saving AC systems

CHINAPLAS 2025: Smart technologies drives new quality productive forces

Conference Videos

【Mandarin session:Webinar playback】Covestro: Next-generation flame-retardant medical polycarbonate solutions for housing applications

【Mandarin session:Webinar playback】Covestro: RE Material Solutions: Empowering electronics industry to fulfill new EPEAT standards and lower carbon footpint

【Mandarin session:Webinar playback】Covestro: Covestro's CMF Trends 2025+: Electronics, Automotive and Healthcare

Corporate/Product Videos

Jiangsu Liside New Material Co., Ltd.

Dow 45 years in China

Carbon Removal and Carbon Emission Reduction Tech Solution——Yuanchu Technology (Beijing) Co. Ltd.

Exhibition

Playback TECHHUB 2025@CPRJ Live Streaming for CHINAPLAS

Playback TECHHUB@CPRJ Live Streaming for CHINAPLAS

Events

Playback On April 14, the "6th Edition CHINAPLAS x CPRJ Plastics Recycling and Circular Economy Conference and Showcase" at the Crowne Plaza Shenzhen Nanshan is currently being livestreamed!

Playback 5th Edition CHINAPLAS x CPRJ Plastics Recycling and Circular Economy Conference and Showcase

Home > News > 3D printing

Innovative upside-down approach enables multi-materials 3D printing

Source:Adsale Plastics Network Date :2020-07-29 Editor :VC

Over the past decade, 3D printing has experienced staggering growth. One of the most widely used manufacturing processes is selective laser sintering (SLS) which is limited to printing with a single material at a time. Researchers have recently invented a new technique that enables multi-materials 3D Printing.

 

SLS prints parts by using laser to heat micron-scale material powders to the point where they fuse together to form a solid mass. The limitations of printing in only one material have been blocking the expansion of 3D printing and preventing it from reaching its full potential. 

 

Led by Prof. Hod Lipson, researchers at New York's Columbia University have developed a new approach to overcome the SLS limitations.

 

By inverting the laser so that it points upwards, they invented a way to enable SLS to use multiple materials at the same time. Their working prototype, along with a print sample that contained two different materials in the same layer, was recently published online by journal Additive Manufacturing.


lipson-whitehead_816_web.jpg

Laser beam transmitting upwards through glass.

 

SLS traditionally has involved fusing together material particles using a laser pointing downward into a heated print bed. A solid object is built from the bottom up, with the printer repeatedly deposits and fuses uniform layer of powders until the part is completed.

 

This process works well if there is just one material used in the printing process. But using multiple materials in a single print has been very challenging, because once the powder layer is deposited onto the bed, it cannot be unplaced, or replaced with a different powder.

 

The researchers decided to find a way to eliminate the need for a powder bed entirely. They set up multiple transparent glass plates, each coated with a thin layer of a different plastic powder. They lowered a print platform onto the upper surface of one of the powders, and directed a laser beam up from below the plate and through the plate’s bottom.

 

This process selectively sinters some powder onto the print platform in a pre-programmed pattern according to a virtual blueprint. The platform is then raised with the fused material, and moved to another plate, coated with a different powder, where the process is repeated. This allows multiple materials to either be incorporated into a single layer, or stacked. Meanwhile, the old, used-up plate is replenished.


sls_print_sample_816_web.jpg

Dual thermoplastic SLS print sample.


print_sample_816_web.jpg

Multi-layer, single material print sample.

 

The researchers demonstrated their working prototype by generating a 50 layer thick, 2.18mm sample out of thermoplastic polyurethane (TPU) powder with an average layer height of 43.6 microns and a multi-material nylon and TPU print with an average layer height of 71 microns.

 

This technology has the potential to print embedded circuits, electromechanical components, and even robot components,” Lipson notes. “We think this will expand laser sintering towards a wider variety of industries by enabling the fabrication of complex multi-material parts without assembly. In other words, this could be key to moving the additive manufacturing industry from printing only passive uniform parts, towards printing active integrated systems.”

 Like 丨  {{details_info.likes_count}}

The content you're trying to view is for members only. If you are currently a member, Please login to access this content.   Login

Source:Adsale Plastics Network Date :2020-07-29 Editor :VC

Over the past decade, 3D printing has experienced staggering growth. One of the most widely used manufacturing processes is selective laser sintering (SLS) which is limited to printing with a single material at a time. Researchers have recently invented a new technique that enables multi-materials 3D Printing.

 

SLS prints parts by using laser to heat micron-scale material powders to the point where they fuse together to form a solid mass. The limitations of printing in only one material have been blocking the expansion of 3D printing and preventing it from reaching its full potential. 

 

Led by Prof. Hod Lipson, researchers at New York's Columbia University have developed a new approach to overcome the SLS limitations.

 

By inverting the laser so that it points upwards, they invented a way to enable SLS to use multiple materials at the same time. Their working prototype, along with a print sample that contained two different materials in the same layer, was recently published online by journal Additive Manufacturing.


lipson-whitehead_816_web.jpg

Laser beam transmitting upwards through glass.

 

SLS traditionally has involved fusing together material particles using a laser pointing downward into a heated print bed. A solid object is built from the bottom up, with the printer repeatedly deposits and fuses uniform layer of powders until the part is completed.

 

This process works well if there is just one material used in the printing process. But using multiple materials in a single print has been very challenging, because once the powder layer is deposited onto the bed, it cannot be unplaced, or replaced with a different powder.

 

The researchers decided to find a way to eliminate the need for a powder bed entirely. They set up multiple transparent glass plates, each coated with a thin layer of a different plastic powder. They lowered a print platform onto the upper surface of one of the powders, and directed a laser beam up from below the plate and through the plate’s bottom.

 

This process selectively sinters some powder onto the print platform in a pre-programmed pattern according to a virtual blueprint. The platform is then raised with the fused material, and moved to another plate, coated with a different powder, where the process is repeated. This allows multiple materials to either be incorporated into a single layer, or stacked. Meanwhile, the old, used-up plate is replenished.


sls_print_sample_816_web.jpg

Dual thermoplastic SLS print sample.


print_sample_816_web.jpg

Multi-layer, single material print sample.

 

The researchers demonstrated their working prototype by generating a 50 layer thick, 2.18mm sample out of thermoplastic polyurethane (TPU) powder with an average layer height of 43.6 microns and a multi-material nylon and TPU print with an average layer height of 71 microns.

 

This technology has the potential to print embedded circuits, electromechanical components, and even robot components,” Lipson notes. “We think this will expand laser sintering towards a wider variety of industries by enabling the fabrication of complex multi-material parts without assembly. In other words, this could be key to moving the additive manufacturing industry from printing only passive uniform parts, towards printing active integrated systems.”

全文内容需要订阅后才能阅读哦~
立即订阅

Leave Comment

Submit

All Comments

No Comment

{{VueShowUserOrCompany(itme.user)}}

{{ toolTimes(itme.updated_at,'s') }}

{{itme.body}}

Reply   
Submit
{{VueShowUserOrCompany(itmes.user)}} {{ toolTimes(itmes.updated_at,'s') }} Reply

{{itmes.body}}

Submit

Recommended Articles

3D printing
3D printing plastic market expected to grow in 2025-2031
 2025-03-12
3D printing
NatureWorks launches Ingeo 3D300 for 3D printing with enhanced efficiency and performance
 2025-02-26
3D printing
Can 3D-printed buildings withstand earthquake? Chinese researchers find out
 2025-02-20
3D printing
Stratasys introduces biocompatible materials for medical applications
 2025-02-04
3D printing
Easy 3D printing technique to make plastics with customized flexibility
 2025-01-07
3D printing
Stratasys becomes official 3D printing partner of NASCAR
 2025-01-06
  Rachel 管理员

You May Also Like

{{[item['category']['name'],item['category']['english_name']][lang]}}
{{VueShowUserOrCompany(item.author)}} {{VueShowDisplayName(item.author)}}
Sponsored
{{item.title}} {{item['summary']}}
{{itags.name}}
{{item.updated_at}}
 {{item.likes_count}}       {{item.comments_count}}

You May Be Interested In

Change

  • People
  • Company
loading... No Content
{{[item.truename,item.truename_english][lang]}} {{[item.company_name,item.company_name_english][lang]}} {{[item.job_name,item.name_english][lang]}}
{{[item.company_name,item.company_name_english][lang]}} Company Name    {{[item.display_name,item.display_name_english][lang]}}  

Polyurethane Investment Medical Carbon neutral Reduce cost and increase efficiency CHINAPLAS Financial reports rPET INEOS Styrolution Evonik Borouge Polystyrene (PS) mono-material Sustainability Circular economy BASF SABIC Multi-component injection molding machine All-electric injection molding machine Thermoforming machine

Innovative upside-down approach enables multi-materials 3D printing

识别右侧二维码,进入阅读全文
下载
x 关闭
订阅
亲爱的用户,请填写一下信息
I have read and agree to the 《Terms of Use》 and 《Privacy Policy》
立即订阅
Top
Feedback
Chat
News
Market News
Applications
Products
Video
In Pictures
Specials
Activities
eBook
Front Line
Plastics Applications
Chemicals and Raw Material
Processing Technologies
Products
Injection
Extrusion
Auxiliary
Blow Molding
Mold
Hot Runner
Screw
Applications
Packaging
Automotive
Medical
Recycling
E&E
LED
Construction
Others
Events
Conference
Webinar
CHINAPLAS
CPS+ eMarketplace
Official Publications
CPS eNews
Media Kit
Social Media
Facebook
Youtube