Search History
Clear History
{{item.search_key}}
Hot Searches
Change
{{item.name}}
{{item.english_name}}
Subscribe eNews
Once A Week Once Every Two Weeks
{{sum}}
Login Register

Applications

Modular crusher from ENMA to show versatility for recycling at K Fair

AIMPLAS expands recyclability evaluation to automotive and E&E sectors

Arburg withdraws from 3D printing business

Products

AkzoNobel, Arkema and BASF jointly lower carbon footprint of architectural powder coatings

K 2025: Automation and control systems from ENGEL

New version of SIGMASOFT to be presented at K 2025

Activities

  • Round Table at Fakuma 2023: “Plastic – Recyclable Rather Than Problem Material!”

  • ArabPlast 2023 – The Success Journey Continues………..

  • GREAT NEWS! INAPA 2023 IS COMING BACK 24 - 26 May 2023 at JIExpo Jakarta, Indonesia

Pictorial

Industry Topic

ASEAN: The Next Manufacturing Hub

Innovative and Sustainable Packaging

Green Plastics: News & Insights

CHINAPLAS

CHINAPLAS 2025 Focus

CHINAPLAS 2024 Focus

CHINAPLAS 2023 Focus

Exhibition Topic

K 2025 FOCUS

CHINA INSIGHT

Fakuma 2024 Highlights

News Videos

PLASTAR Packaging Machinery new factory breaks ground in Wenzhou China

The 7th Edition CPRJ Medical Plastics and Rubber Conference fruitfully held

CPRJ Packaging Conference: motan offers intelligent systems for packaging industry

Conference Videos

ENGEL e-cap 380

ENGEL e-speed 280 125ml thinwall container with 30% rPET

ENGEL e-speed 420 packaging

Corporate/Product Videos

Jiangsu Liside New Material Co., Ltd.

Dow 45 years in China

Carbon Removal and Carbon Emission Reduction Tech Solution——Yuanchu Technology (Beijing) Co. Ltd.

Exhibition

Playback TECHHUB 2025@CPRJ Live Streaming for CHINAPLAS

Playback TECHHUB@CPRJ Live Streaming for CHINAPLAS

Events

Playback On April 14, the "6th Edition CHINAPLAS x CPRJ Plastics Recycling and Circular Economy Conference and Showcase" at the Crowne Plaza Shenzhen Nanshan is currently being livestreamed!

Playback 5th Edition CHINAPLAS x CPRJ Plastics Recycling and Circular Economy Conference and Showcase

Home > News > Medical

Reformable thermoplastic biomaterial newly developed for medical implants

Source:Adsale Plastics Network Date :2020-07-10 Editor :JK

A new thermoplastic biomaterial, which is tough and strong but also easy to process and shape has been developed by researchers at the University of Birmingham.

 

A type of nylon, the material’s shape memory properties enable it to be stretched and moulded but able to reform into its original shape when heated. This makes it useful for medical devices such as bone replacements, where minimally invasive surgery techniques require additional flexibility in implant materials.

 

The material was developed in the University’s School of Chemistry, by a team investigating ways to use stereochemistry – a double bond in the backbone of the polymer chain – to manipulate the properties of polyesters and polyamides (nylons).


1_web.jpg

The new biomaterial is useful for medical devices such as bone replacements.


Biocompatible polymers are widely used in medicine, from tissue engineering to medical devices such as stents and sutures. Although much progress has been made in the area of resorbable or degradable materials that are broken down by the body over time, there are still only a handful of non-resorbable polymers that can be used for longer-term applications.

 

Existing non-resorbable biomaterials, like nylons, currently commercially available suffer from a variety of limitations. Metal implants, for example, can wear poorly, leading to particle fragments breaking off, while composite materials can be difficult to process or extremely expensive.

 

The new material can be made using standard chemistry techniques and offers a stable, long-lasting option, with mechanical properties that can be tuned for different end products.

 

Senior researcher, Professor Andrew Dove, says: “This material offers some really distinctive advantages over existing products used to manufacture medical devices such as bone and joint replacements. We think it could offer a cost-effective, versatile and robust alternative in the medical device marketplace.”

 

A further advantage of the material is its amorphous structure. Josh Worch, the postdoctoral researcher who led the work, explains why: “For many plastics, including nylon, the toughness is often dependent on their semi-crystalline structure, but this also makes them harder to shape and mould. However, our new plastic is as tough as nylon, but without being crystalline so it is much easier to manipulate.”

 

The research team was able to design and produce the plastic, which is now covered by a patent, and test it in rats to prove its biocompatibility.

 Like 丨  {{details_info.likes_count}}
Medical

The content you're trying to view is for members only. If you are currently a member, Please login to access this content.   Login

Source:Adsale Plastics Network Date :2020-07-10 Editor :JK

A new thermoplastic biomaterial, which is tough and strong but also easy to process and shape has been developed by researchers at the University of Birmingham.

 

A type of nylon, the material’s shape memory properties enable it to be stretched and moulded but able to reform into its original shape when heated. This makes it useful for medical devices such as bone replacements, where minimally invasive surgery techniques require additional flexibility in implant materials.

 

The material was developed in the University’s School of Chemistry, by a team investigating ways to use stereochemistry – a double bond in the backbone of the polymer chain – to manipulate the properties of polyesters and polyamides (nylons).


1_web.jpg

The new biomaterial is useful for medical devices such as bone replacements.


Biocompatible polymers are widely used in medicine, from tissue engineering to medical devices such as stents and sutures. Although much progress has been made in the area of resorbable or degradable materials that are broken down by the body over time, there are still only a handful of non-resorbable polymers that can be used for longer-term applications.

 

Existing non-resorbable biomaterials, like nylons, currently commercially available suffer from a variety of limitations. Metal implants, for example, can wear poorly, leading to particle fragments breaking off, while composite materials can be difficult to process or extremely expensive.

 

The new material can be made using standard chemistry techniques and offers a stable, long-lasting option, with mechanical properties that can be tuned for different end products.

 

Senior researcher, Professor Andrew Dove, says: “This material offers some really distinctive advantages over existing products used to manufacture medical devices such as bone and joint replacements. We think it could offer a cost-effective, versatile and robust alternative in the medical device marketplace.”

 

A further advantage of the material is its amorphous structure. Josh Worch, the postdoctoral researcher who led the work, explains why: “For many plastics, including nylon, the toughness is often dependent on their semi-crystalline structure, but this also makes them harder to shape and mould. However, our new plastic is as tough as nylon, but without being crystalline so it is much easier to manipulate.”

 

The research team was able to design and produce the plastic, which is now covered by a patent, and test it in rats to prove its biocompatibility.

全文内容需要订阅后才能阅读哦~
立即订阅

Recommended Articles

Medical
CPRJ Medical Plastics Conference: How to navigate the new arena?
 2025-09-11
Medical
ENGEL to present all-electric machine for the diagnostics market at K 2025
 2025-09-09
Medical
KRAIBURG TPE supports ostomy care accessories
 2025-07-29
Medical
Evonik opens its largest medical device center in Shanghai
 2025-07-14
Medical
Nordson launches adhesive dispensing system for disposable hygiene market
 2025-07-08
Medical
Covestro launches production of medical-grade TPU in Asia Pacific
 2025-07-04

You May Be Interested In

Change

  • People
  • Company
loading... No Content
{{[item.truename,item.truename_english][lang]}} {{[item.company_name,item.company_name_english][lang]}} {{[item.job_name,item.name_english][lang]}}
{{[item.company_name,item.company_name_english][lang]}} Company Name    {{[item.display_name,item.display_name_english][lang]}}  

Polyurethane Investment Medical Carbon neutral Reduce cost and increase efficiency CHINAPLAS Financial reports rPET INEOS Styrolution Evonik Borouge Polystyrene (PS) mono-material Sustainability Circular economy BASF SABIC Multi-component injection molding machine All-electric injection molding machine Thermoforming machine

Reformable thermoplastic biomaterial newly developed for medical implants

识别右侧二维码,进入阅读全文
下载
x 关闭
订阅
亲爱的用户,请填写一下信息
I have read and agree to the 《Terms of Use》 and 《Privacy Policy》
立即订阅
Top
Feedback
Chat
News
Market News
Applications
Products
Video
In Pictures
Specials
Activities
eBook
Front Line
Plastics Applications
Chemicals and Raw Material
Processing Technologies
Products
Injection
Extrusion
Auxiliary
Blow Molding
Mold
Hot Runner
Screw
Applications
Packaging
Automotive
Medical
Recycling
E&E
LED
Construction
Others
Events
Conference
Webinar
CHINAPLAS
CPS+ eMarketplace
Official Publications
CPS eNews
Media Kit
Social Media
Facebook
Youtube