Search History
Clear History
{{item.search_key}}
Hot Searches
Change
{{item.name}}
{{item.english_name}}
Subscribe eNews
Once A Week Once Every Two Weeks
{{sum}}
Login Register

Applications

INEOS launches new grade with 70% recycled content for cosmetics packaging

Swiss partnership in bio-based FMCG packaging

Borealis and Messe Düsseldorf conclude successful reusable cup pilot at K 2025

Products

TAIZHOU QIHONG MOULD CO.,LTD

Toray unveils world’s first 160°C-resistant BOPP film

Covestro's new digital configurator enables sustainable polyurethane foam design

Activities

  • Fakuma to celebrate 30th anniversary edition in October 2026

  • Italy pavilion at Plast Eurasia proves its rising presence in Turkish market

  • CHINAPLAS 2026: Grand stage for new material, smart manufacturing and green solutions

Pictorial

Industry Topic

ASEAN: The Next Manufacturing Hub

Innovative and Sustainable Packaging

Green Plastics: News & Insights

CHINAPLAS

CHINAPLAS 2025 Focus

CHINAPLAS 2024 Focus

CHINAPLAS 2023 Focus

Exhibition Topic

CHINA INSIGHT

K 2025 FOCUS

Fakuma 2024 Highlights

News Videos

Haitian South China Headquarters opening

BEILIJIA Double Walled Corrugated Pipe Plant

Magnetic mold changing system developed in-house by Shanghai Qiaotian

Conference Videos

【Mandarin session: Webinar playback】SACMI: Your Digitalized Manufacturing, Your Future Today

[Live Replay] LK Group: Smart Manufacturing, New Chapters in Southeast Asia: High-Efficiency Solutions in PET Preform & Thin-Wall Packaging

[Live Replay] Fu Chun Shin (FCS): Data-Driven Digital Rebirth and Intelligent Future of Injection Molding

Corporate/Product Videos

Second-hand plastic pipe extruder, 90% new, highly efficient and stable, suitable for processing various pipe specifications. Ideal choice for export.

Small Boss keep moving forward — see you at 2026 IPF Bangladesh exhibition! 💪✨

High-temperature gear pump

Exhibition

Playback TECHHUB 2025@CPRJ Live Streaming for CHINAPLAS

Playback TECHHUB@CPRJ Live Streaming for CHINAPLAS

Events

Playback On April 14, the "6th Edition CHINAPLAS x CPRJ Plastics Recycling and Circular Economy Conference and Showcase" at the Crowne Plaza Shenzhen Nanshan is currently being livestreamed!

Playback 5th Edition CHINAPLAS x CPRJ Plastics Recycling and Circular Economy Conference and Showcase

Home > News > Medical

Scientists develop anti-coronavirus surface coating based on nanomaterials

Source:Adsale Plastics Network Date :2020-05-12 Editor :JK

The coronavirus, SARS-CoV-2, which is responsible for the current COVID-19 pandemic, is transmitted between people mainly via respiratory droplets, but it is known that the virus remains stable on various surfaces for days.

 

In light of the possibility that the virus can spread through contaminated surfaces, it is important to be able to sterilize surfaces with high contamination potential, such as doorknobs, elevator buttons or handrails in public areas in general, and in hospitals and clinics in particular.

 

However, current disinfectants are mainly based on chemicals such as poisonous sodium hypochlorite (bleach) or alcohol, both of which provide only a temporary measure until the next exposure to the virus.

 

Prof. Angel Porgador, from the Department of Microbiology, Immunology and Genetics at Ben-Gurion University (BGU) and the National Institute of Biotechnology in the Negev (NIBN), and Dr. Mark Schvartzman, the Department of Materials Engineering at BGU, are developing novel surface coatings that will have a long term effect, and contain nanoparticles of safe metal ions and polymers with anti-viral and anti-microbial activity.

 

Certain metals can be lethal, even in small quantities, for viruses and bacteria and are not poisonous to humans. In proof of concept experiments, in which also PhD students Yariv Greenshpan and Esti Toledo, and postdoc Guillaume Le Saux participated, the researchers assessed the effect of surfaces coated with nanoparticles of various metals on the infectivity of lentiviruses, which belong to the HIV family, in human cells.


1_web.jpg

Esti Toledo and Guillaume Le Saux at Dr. Mark Schvartzman's laboratory. (Photo: Dani Machlis)


Findings show that surfaces coated with copper nanoparticles strongly block infection of the cells by the virus. These ongoing experiments show a huge potential for copper ions in preventing surface-mediated infection with SARS-CoV-2.

 

Based on these findings, the researchers are developing anti-viral coatings that can be painted or sprayed on surfaces. The coatings are based on polymers, which are the starting materials of plastics and paints, and contain nanoparticles of copper and other metals. The nanoparticles embedded in the polymer will enable controlled release of metal ions onto the coated surface.

 

Studies show that these ions have a strong anti-viral effect, which can eradicate virus particles that adhere to the surface. Because the release of ions is extremely slow, the coating can be effective for a long period of time – weeks and even months, and it will reduce the infectivity of the virus particles by more than 10-fold.

 

Josh Peleg, CEO, BGN Technologies, said, "The need to develop anti-viral coatings has greatly increased recently, with the SARS-CoV-2 outbreak, and this need will likely remain high even after the pandemic ends, due to increased awareness."

 

The research activity of Prof. Porgador and Dr. Schvartzman is part of the coronavirus research task force, founded by Prof. Daniel Chamovitz, President of BGU. To support this activity, it was decided to divert research funds in order to find rapid solutions for various challenges associated with the coronavirus pandemic.

 

The invention received the support of the Israel Innovation Authority, in response to a call for proposals for coping with the coronavirus. The project is one of 27 proposals submitted to the Israel Innovation Authority by BGN Technologies, the technology transfer company of BGU, based on innovative and diverse inventions of researchers at BGU and the National Institute for Biotechnology in the Negev (NIBN) for the prevention, diagnosis and treatment of COVID-19.

 Like 丨  {{details_info.likes_count}}

The content you're trying to view is for members only. If you are currently a member, Please login to access this content.   Login

Source:Adsale Plastics Network Date :2020-05-12 Editor :JK

The coronavirus, SARS-CoV-2, which is responsible for the current COVID-19 pandemic, is transmitted between people mainly via respiratory droplets, but it is known that the virus remains stable on various surfaces for days.

 

In light of the possibility that the virus can spread through contaminated surfaces, it is important to be able to sterilize surfaces with high contamination potential, such as doorknobs, elevator buttons or handrails in public areas in general, and in hospitals and clinics in particular.

 

However, current disinfectants are mainly based on chemicals such as poisonous sodium hypochlorite (bleach) or alcohol, both of which provide only a temporary measure until the next exposure to the virus.

 

Prof. Angel Porgador, from the Department of Microbiology, Immunology and Genetics at Ben-Gurion University (BGU) and the National Institute of Biotechnology in the Negev (NIBN), and Dr. Mark Schvartzman, the Department of Materials Engineering at BGU, are developing novel surface coatings that will have a long term effect, and contain nanoparticles of safe metal ions and polymers with anti-viral and anti-microbial activity.

 

Certain metals can be lethal, even in small quantities, for viruses and bacteria and are not poisonous to humans. In proof of concept experiments, in which also PhD students Yariv Greenshpan and Esti Toledo, and postdoc Guillaume Le Saux participated, the researchers assessed the effect of surfaces coated with nanoparticles of various metals on the infectivity of lentiviruses, which belong to the HIV family, in human cells.


1_web.jpg

Esti Toledo and Guillaume Le Saux at Dr. Mark Schvartzman's laboratory. (Photo: Dani Machlis)


Findings show that surfaces coated with copper nanoparticles strongly block infection of the cells by the virus. These ongoing experiments show a huge potential for copper ions in preventing surface-mediated infection with SARS-CoV-2.

 

Based on these findings, the researchers are developing anti-viral coatings that can be painted or sprayed on surfaces. The coatings are based on polymers, which are the starting materials of plastics and paints, and contain nanoparticles of copper and other metals. The nanoparticles embedded in the polymer will enable controlled release of metal ions onto the coated surface.

 

Studies show that these ions have a strong anti-viral effect, which can eradicate virus particles that adhere to the surface. Because the release of ions is extremely slow, the coating can be effective for a long period of time – weeks and even months, and it will reduce the infectivity of the virus particles by more than 10-fold.

 

Josh Peleg, CEO, BGN Technologies, said, "The need to develop anti-viral coatings has greatly increased recently, with the SARS-CoV-2 outbreak, and this need will likely remain high even after the pandemic ends, due to increased awareness."

 

The research activity of Prof. Porgador and Dr. Schvartzman is part of the coronavirus research task force, founded by Prof. Daniel Chamovitz, President of BGU. To support this activity, it was decided to divert research funds in order to find rapid solutions for various challenges associated with the coronavirus pandemic.

 

The invention received the support of the Israel Innovation Authority, in response to a call for proposals for coping with the coronavirus. The project is one of 27 proposals submitted to the Israel Innovation Authority by BGN Technologies, the technology transfer company of BGU, based on innovative and diverse inventions of researchers at BGU and the National Institute for Biotechnology in the Negev (NIBN) for the prevention, diagnosis and treatment of COVID-19.

全文内容需要订阅后才能阅读哦~
立即订阅

Recommended Articles

Medical
Kistler and ATS Life Sciences Systems join forces for high-speed medical device assembly line
 2026-01-28
Medical
SABIC introduces new PFAS-free LNP ELCRES PC resin for medical devices
 2025-12-24
Medical
Sanner launches tethered cap for medical packaging
 2025-12-16
Medical
AI-for-science startup launches lab in Singapore to accelerate chemical discovery
 2025-12-08
Medical
(Interview) How a tube unlocks localization in the billion-dollar medical consumables market
 2025-12-04
Medical
Franplast introduces biocompatible TPEs for medical sector
 2025-12-01

You May Be Interested In

Change

  • People
  • Company
loading... No Content
{{[item.truename,item.truename_english][lang]}} {{[item.company_name,item.company_name_english][lang]}} {{[item.job_name,item.name_english][lang]}}
{{[item.company_name,item.company_name_english][lang]}} Company Name    {{[item.display_name,item.display_name_english][lang]}}  

Polyurethane Investment Medical Carbon neutral Reduce cost and increase efficiency CHINAPLAS Financial reports rPET INEOS Styrolution Evonik Borouge Polystyrene (PS) mono-material Sustainability Circular economy BASF SABIC Multi-component injection molding machine All-electric injection molding machine Thermoforming machine

Scientists develop anti-coronavirus surface coating based on nanomaterials

识别右侧二维码,进入阅读全文
下载
x 关闭
订阅
亲爱的用户,请填写一下信息
I have read and agree to the 《Terms of Use》 and 《Privacy Policy》
立即订阅
Top
Feedback
Chat
News
Market News
Applications
Products
Video
In Pictures
Specials
Activities
eBook
Front Line
Plastics Applications
Chemicals and Raw Material
Processing Technologies
Products
Injection
Extrusion
Auxiliary
Blow Molding
Mold
Hot Runner
Screw
Applications
Packaging
Automotive
Medical
Recycling
E&E
LED
Construction
Others
Events
Conference
Webinar
CHINAPLAS
CPS+ eMarketplace
Official Publications
CPS eNews
Media Kit
Social Media
Facebook
Linkedin